Settling Behavior of Particles in Bubble Containing Newtonian Fluids: Experimental Study and Model Development

2021 ◽  
Author(s):  
Silin Jing ◽  
Xianzhi Song ◽  
Zhaopeng Zhu ◽  
Buwen Yu ◽  
Shiming Duan

Abstract Accurate description of cuttings slippage in the gas-liquid phase is of great significance for wellbore cleaning and the control accuracy of bottom hole pressure during MPD. In this study, the wellbore bubble flow environment was simulated by a constant pressure air pump and the transparent wellbore, and the settling characteristics of spherical particles under different gas volume concentrations were recorded and analyzed by highspeed photography. A total of 225 tests were conducted to analyze the influence of particle diameter (1–12mm), particle density (2700–7860kg/m^3), liquid viscosity and bubble volume concentration on particle settling velocity. Gas drag force is defined to quantitatively evaluate the bubble’s resistance to particle slippage. The relationship between bubble drag coefficient and particle Reynolds number is obtained by fitting the experimental results. An explicit settling velocity equation is established by introducing Archimedes number. This explicit equation with an average relative error of only 8.09% can directly predict the terminal settling velocity of the sphere in bubble containing Newtonian fluids. The models for predicting bubble drag coefficient and the terminal settling velocity are valid with particle Reynolds number ranging from 0.05 to 167 and bubble volume concentration ranging from 3.0% to 20.0%. Besides, a trial-and-error procedure and an illustrative example are presented to show how to calculate bubble drag coefficient and settling velocity in bubble containing fluids. The results of this study will provide the theoretical basis for wellbore cleaning and accurate downhole pressure to further improve the performance of MPD in treating gas influx.

1987 ◽  
Vol 109 (3) ◽  
pp. 319-323 ◽  
Author(s):  
M. Y. Dedegil

Drag forces on bodies in non-Newtonian fluids which are to be described by using the Reynolds number should only contain forces which are associated with the fluid velocity or particle velocity. Forces due to the yield stress τ0 must be considered separately. According to its physical composition, the Reynolds number must be calculated by means of the fully representative shear stress including the yield stress τ0. Then the drag coefficient cD as a function of the Reynolds number can be traced back to that of Newtonian fluids.


2021 ◽  
Author(s):  
Fan Yang ◽  
Yuhong Zeng ◽  
Wen-Xin Huai

Abstract The settlement of non-spherical particles, such as propagules of plants and natural sediments, are commonly observed in riverine ecosystems. The settling process is influenced by both particle properties (size, density and shape) and fluid properties (density and viscosity). Therefore, the drag law of non-spherical particles is a function of both particle Reynolds number and particle shape. Herein, a total of 828 settling data are collected from the literatures, which cover a wide range of particle Reynolds number (0.008–10000). To characterize the influence of particle shapes, sphericity is adopted as the general shape factor, which varies from 0.421 to 1.0. By comparing the measured drag with the standard drag curve of spheres, we modify the spherical drag law with three shape-dependent functions to develop a new drag law for non-spherical particles. Combined with an iterative procedure, a new model is thus obtained to predict the settling velocity of non-spherical particles of various shapes and materials. Further applications in hydrochorous propagule dispersal and sediment transport are projected based on deeper understanding of the settling process.


2017 ◽  
Vol 159 ◽  
pp. 409-418 ◽  
Author(s):  
Zhengming Xu ◽  
Xianzhi Song ◽  
Gensheng Li ◽  
Qingling Liu ◽  
Zhaoyu Pang ◽  
...  

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Fan Wenyuan ◽  
Ma Youguang ◽  
Jiang Shaokun ◽  
Yang Ke ◽  
Li Huaizhi

The velocity, shape, and trajectory of the rising bubble in polyacrylamide (PAM) and carboxymethylcellulose (CMC) aqueous solutions were experimentally investigated using a set of homemade velocimeters and a video camera. The effects of gas the flowrate and solution concentration on the bubble terminal velocity were examined respectively. Results show that the terminal velocity of the bubble increases with the increase in the gas flowrate and the decrease in the solution concentration. The shape of the bubble is gradually flattened horizontally to an ellipsoid with the increase in the Reynolds number (Re), Eötvös number (Eo), and Morton number (Mo). With the increase in the Re and Eo, the rising bubble in PAM aqueous solutions begin to oscillate, but there is no oscillation phenomena for CMC aqueous solutions. By dimensional analysis, the drag coefficient of a single bubble in non-Newtonian fluids in a moderate Reynolds number was correlated as a function of Re, Eo, and Archimedes number (Ar) based on the equivalent bubble diameter. The predicted results by the present correlation agree well with the experimental data.


2020 ◽  
Author(s):  
Onno J. I. Kramer ◽  
Peter J. de Moel ◽  
Shravan K. R. Raaghav ◽  
Eric T. Baars ◽  
Wim H. van Vugt ◽  
...  

Abstract. Natural particles are frequently applied in drinking water treatment processes in fixed bed reactors, in fluidised bed reactors, and in sedimentation processes to clarify water and to concentrate solids. When particles settle, it has been found that in terms of hydraulics, natural particles behave differently when compared to perfectly round spheres. To estimate the terminal settling velocity of single solid particles in a liquid system, a comprehensive collection of equations is available. For perfectly round spheres, the settling velocity can be calculated quite accurately. However, for naturally polydisperse non-spherical particles, experimentally measured settling velocities of individual particles show considerable spread from the calculated average values. This work aimed to analyse and explain the different causes of this spread. To this end, terminal settling experiments were conducted in a quiescent fluid with particles varying in density, size and shape. For the settling experiments, opaque and transparent spherical polydisperse and monodisperse glass beads were selected. In this study, we also examined drinking water related particles, like calcite pellets and crushed calcite seeding material grains, both applied in drinking water softening. Polydisperse calcite pellets were sieved and separated to acquire more uniformly dispersed samples. In addition, a wide variety of grains with different densities, sizes and shapes were investigated for their terminal settling velocity and behaviour. The derived drag coefficient was compared with well-known models such as Brown–Lawler. A sensitivity analysis showed that the spread is caused to a lesser extent by variations in fluid properties, measurement errors and wall effects. Natural variations in specific particle density, path trajectory instabilities and distinctive multi-particle settling behaviour caused a slightly larger degree of spread. In contrast, greater spread is caused by variations in particle size, shape and orientation.


1994 ◽  
Vol 59 (12) ◽  
pp. 2583-2594 ◽  
Author(s):  
Miloslav Hartman ◽  
Otakar Trnka ◽  
Karel Svoboda ◽  
Václav Veselý

A comprehensive correlation has been developed of the drag coefficient for nonspherical isometric particles as a function the Reynolds number and the particle sphericity on the basis of data reported in the literature. The proposed formula covers the Stokes, the transitional and the Newton region. The predictions of the reported correlation have been compared to experimental data measured in this work with the dolomitic materials in respect to their use in calcination and gas cleaning processes with fluidized beds. Approximative explicit formulae have also been reported that make it possible to estimate the terminal free-fall velocity of a given particle or to predict the particle diameter corresponding to a fluid velocity of interest.


Author(s):  
Rafik Ouchene ◽  
Amine Chadil ◽  
Pascal Fede ◽  
Mohammed Khalij ◽  
Anne Tanière ◽  
...  

The paper deals with gas-solid turbulent flows carrying non-spherical particles. The main objective of the present paper is to compute the hydrodynamics forces on non-spherical particles as a function of the particle orientation, for different particle shapes and a large range of particle Reynolds number. Two Direct Numerical Simulations at the scale of the particle are used, i.e. a body-fitted approach and a viscous penalty approach, in the case of a uniform flow with a single ellipsoidal particle. Results are compared with several correlations from the literature and a new proposal for the drag coefficient is given. The study is then extended to the case of a lattice of non-spherical particles to measure the pressure drop and to connect it with the drag coefficient.


Sign in / Sign up

Export Citation Format

Share Document