Effect of Long-Term Room Temperature Aging on the Fatigue Properties of SnAgCu Solder Joint

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Sinan Su ◽  
Nianjun Fu ◽  
Francy John Akkara ◽  
Sa'd Hamasha

Solder joints in electronic assemblies are subjected to mechanical and thermal cycling. These cyclic loadings lead to the fatigue failure of solder joints involving damage accumulation, crack initiation, crack propagation, and failure. Aging leads to significant changes on the microstructure and mechanical behavior of solder joints. While the effect of thermal aging on solder behavior has been examined, no prior studies have focused on the effect of long-term room temperature aging (25 °C) on the solder failure and fatigue behavior. In this paper, the effects of long-term room temperature aging on the fatigue behavior of five common lead-free solder alloys, i.e., SAC305, SAC105, SAC-Ni, SAC-X-Plus, and Innolot, have been investigated. Several individual lead-free solder joints on printed circuited boards with two aging conditions (no aging and 4 years of aging) have been prepared and subjected to shear cyclic stress–strain loadings until the complete failure. Fatigue life was recorded for each solder alloy. From the stress–strain hysteresis loop, inelastic work and plastic strain ranges were measured and empirically modeled with the fatigue life. The results indicated that 4 years of room temperature aging significantly decreases the fatigue life of the solder joints. Also, inelastic work per cycle and plastic strain range are increased after 4 years of room temperature aging. The fatigue life degradation for the solder alloys with doped elements (Ni, Bi, Sb) was relatively less compared to the traditional SAC105 and SAC305.

Author(s):  
Hongtao Ma ◽  
Jeffrey C. Suhling ◽  
Yifei Zhang ◽  
Pradeep Lall ◽  
Michael J. Bozack

The microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal aging and/or thermal cycling environments. In our prior work on aging effects (Ma, et al., ECTC 2006), we demonstrated that the observed material behavior variations of SAC405 and SAC305 lead free solders during room temperature aging (25 °C) were unexpectedly large and universally detrimental to reliability. Such effects for lead free solder materials are much more dramatic at the higher aging temperatures (e.g. 100–150 °C) typical of the harsh environments present in high performance computing and in automotive, aerospace, and defense applications. However, there has been little work in the literature, and the work that has been done has concentrated on the degradation of solder ball shear strength (e.g. Dage Shear Tester). Current finite element models for solder joint reliability during thermal cycling accelerated life testing are based on traditional solder constitutive and failure models that do not evolve with material aging. Thus, there will be significant errors in the calculations with the new lead free SAC alloys that illustrate dramatic aging phenomena. In the current work, we have explored the effects of elevated temperature isothermal aging on the mechanical behavior and reliability of lead free solders. The effects of aging on mechanical behavior have been examined by performing stress-strain and creep tests on SAC405 and SAC305 samples that were aged for various durations (0–6 months) at several elevated temperatures (80, 100, 125, and 150 °C). Analogous tests were performed with 63Sn-37Pb eutectic solder samples for comparison purposes. Variations of the temperature dependent mechanical properties (elastic modulus, yield stress, ultimate strength, creep compliance, etc.) were observed and modeled as a function of aging time and temperature. In this paper, we have concentrated our efforts on presenting the results for samples aged at 125 °C. In addition, the new elevated temperature aging data were correlated with our room temperature results from last year’s investigation. The results obtained in this work have demonstrated the significant effects of elevated temperature exposure on solder joints. As expected, the mechanical properties evolved at a higher rate and experienced larger changes during elevated temperature aging (compared to room temperature aging). After approximately 200 hours of aging, the lead free solder joint material properties were observed to degrade at a nearly constant rate. We have developed a mathematical model to predict the variation of the properties with aging time and aging temperature. Our data for the evolution of the creep response of solders with elevated temperature aging show that the creep behavior of lead free and tin-lead solders experience a “crossover point” where lead free solders begin to creep at higher rates than standard 63Sn-37Pb solder for the same stress level. Such an effect is not observed for solder joints aged at room temperature, where SAC alloys always creep at lower rates than Sn-Pb solder.


2012 ◽  
Vol 622-623 ◽  
pp. 195-199 ◽  
Author(s):  
M.A.A. Mohd Salleh ◽  
A.R. Nik Nurhidayatul Suhada ◽  
Flora Somidin ◽  
Rafezi Ahmad Khairel ◽  
C.S. Lee ◽  
...  

Electromigration effects on the solder joint formation of 99.3Sn-0.7Cu and 96.5Sn-3.0Ag-0.5Cu lead-free solder with Cu electroplated Ni layer wire were investigated. The electromigration effects on the solder joints were studied after current density stressing at 1 x 103 A/cm2 in room temperature for 0 h, 120 h, and 240 h. The research work found that intermetallic compound (IMC) formation on the joint is increases for both solders with longer period of current stress applied. Higher IMC thickness growth in 99.3Sn-0.7Cu solder joint compared to 99.3Sn-0.7Cu is detected and both anode regions of the solder joints show higher IMC thickness growth compared to cathode region. Experimental results show 99.3Sn-0.7Cu solder joint is more prone to failure under current stress compared to 96.5Sn-3.0Ag-0.5Cu solder joint with thicker IMC which translates to higher brittleness.


Author(s):  
Takahiro Akutsu ◽  
Qiang Yu

This paper presents the influence of the micro structure on the crack propagation in lead free solder joint. The author’s group have studied the Manson-Coffin’s law for lead free solder joint by using the isothermal fatigue test and FEM analytical approaches to establish the practicable evaluation of thermal fatigue life of solder joints, for example, for the Sn-Cu-Ni solder, because this solder is attracted from the aspect of the decrease of solder leach in the flow process and material cost. However, even if the same loading is given to the solder joints of BGA test piece, there was a large dispersion in the fatigue life. Even though the effect of the shape difference has been considered, the range of the dispersion could not been explained sufficiently. In the study, the fatigue crack propagation modes in the solder joints were investigated, and an internal fatigue crack mode and an interfacial fatigue crack mode were confirmed. And the tendency of a shorter on fatigue life in the interfacial fatigue mode was confirmed. To clarify the mechanism of these fatigue crack modes, the crystal grain size in the solder joints was investigated before the fatigue test and also after the test. Furthermore, the verification of the mechanism using FEM models considering the crystal grain size was carried out. First of all, each element in FEM models matching to the average crystal grain size was made. Second, the inelastic strain ranges in each FEM models were studied. As a result, it was shown that the influence of the crude density of the crystal grain to the fatigue crack progress can be evaluated. In addition, the micro structure of the solder joint of large-scale electronic devices is observed, and FEM model was made based on the observation result. As a result, it was shown that the influence of the directionality with the crystal grain to the fatigue crack progress can be evaluated.


2002 ◽  
Vol 2002 (0) ◽  
pp. 9-10
Author(s):  
Ken KAMINISHI ◽  
Yukihiro KAWAMURA ◽  
Motoharu TANEDA ◽  
Hirohide KAIDA

Author(s):  
Takashi Kawakami ◽  
Takahiro Kinoshita ◽  
Hirokazu Oriyama

Solder joints are sometimes opened under thermal cyclic loads as low cycle fatigue phenomena. The fatigue crack is usually initiated around the edge of the interface where stress and strain very severely concentrate, having stress strain singularity. In this study, Sn-3.0Ag-0.5Cu test pieces with V shape notch were supplied to low cycle fatigue tests at 100°C. And inelastic stress strain simulations, which were based on time-dependent non-unified material model, were carried out under several cyclic load levels to obtain strain distributions around the bottom of the V notch. By results of fatigue test and inelastic simulation, the depth from the bottom of the V notch, where the strain range agrees with the prediction of the fatigue life based on smooth test pieces on Coffin-Manson rule, was investigated as the mechanical design rule for lead free solder joints.


Sign in / Sign up

Export Citation Format

Share Document