scholarly journals The Role of Forcing and Eddy Viscosity Variation on the Log-Layer Mismatch Observed in Wall-Modeled Large-Eddy Simulations

2018 ◽  
Vol 141 (5) ◽  
Author(s):  
Rey DeLeon ◽  
Inanc Senocak

We investigate the role of eddy viscosity variation and the effect of zonal enforcement of the mass flow rate on the log-layer mismatch problem observed in turbulent channel flows. An analysis of the mean momentum balance shows that it lacks a degree-of-freedom (DOF) when eddy viscosity is large, and the mean velocity conforms to an incorrect profile. Zonal enforcement of the target flow rate introduces an additional degree-of-freedom to the mean momentum balance, similar to an external stochastic forcing term, leading to a significant reduction in the log-layer mismatch. We simulate turbulent channel flows at friction Reynolds numbers of 2000 and 5200 on coarse meshes that do not resolve the viscous sublayer. The second-order turbulence statistics agree well with the direct numerical simulation benchmark data when results are normalized by the velocity scale extracted from the filtered velocity field. Zonal enforcement of the flow rate also led to significant improvements in skin friction coefficients.

Author(s):  
Shinji Honami ◽  
Wataru Tsuboi ◽  
Takaaki Shizawa

This paper presents the effect of flame dome depth on the total pressure performance and flow behavior in a sudden expansion region of the combustor diffuser without flow entering the dome head. The mean velocity and turbulent Reynolds stress profiles in the sudden expansion region were measured by a Laser Doppler Velocitmetry (LDV) system. The experiments show that total pressure loss is increased, when flame dome depth is increased. Installation of an inclined combuster wall in the sudden expansion region is suggested from the viewpoint of a control of the reattaching flow. The inclined combustor wall is found to be effective in improvement of the diffuser performance. Better characteristics of the flow rate distribution into the branched channels are obtained in the inclined wall configuration, even if the distorted velocity profile is provided at the diffuser inlet.


Author(s):  
Carlos Moreno ◽  
Kiran Bhaganagar

Patient specific simulations of a single patient based on an accurate representation of the plaque in a diseased coronary artery with 35% stenosis are performed to understand the effect of inlet forcing frequency and amplitude on the wall shear stress (WSS). Numerical simulations are performed with unsteady flow conditions in a laminar regime. The results have revealed that at low amplitudes, WSS is insensitive to forcing frequency and is it in phase with Q. The maximum WSS is observed at the proximal region of the stenosis, and WSS has highest negative values at the peak location of the stenosis. For higher pulsatile amplitude (a > 1.0), WSS exhibits a strong sensitivity with forcing frequencies. At higher forcing frequency the WSS exhibits nonlinear response to the inlet forcing frequency. Furthermore, significant differences in the mean velocity profile are observed during maximum and minimum volumetric flow rates.


2019 ◽  
Vol 875 ◽  
pp. 101-123 ◽  
Author(s):  
Weipeng Li ◽  
Yitong Fan ◽  
Davide Modesti ◽  
Cheng Cheng

The mean skin-friction drag in a wall-bounded turbulent flow can be decomposed into different physics-informed contributions based on the mean and statistical turbulence quantities across the wall layer. Following Renard & Deck’s study (J. Fluid Mech., vol. 790, 2016, pp. 339–367) on the skin-friction drag decomposition of incompressible wall-bounded turbulence, we extend their method to a compressible form and use it to investigate the effect of density and viscosity variations on skin-friction drag generation, using direct numerical simulation data of compressible turbulent channel flows. We use this novel decomposition to study the skin-friction contributions associated with the molecular viscous dissipation and the turbulent kinetic energy production and we investigate their dependence on Reynolds and Mach number. We show that, upon application of the compressibility transformation of Trettel & Larsson (Phys. Fluids, vol. 28, 2016, 026102), the skin-friction drag contributions can be only partially transformed into the equivalent incompressible ones, as additional terms appear representing deviations from the incompressible counterpart. Nevertheless, these additional contributions are found to be negligible at sufficiently large equivalent Reynolds number and low Mach number. Moreover, we derive an exact relationship between the wall heat flux coefficient and the skin-friction drag coefficient, which allows us to relate the wall heat flux to the skin-friction generation process.


A set of model equations is given to describe the gross features of a statistically steady or 'slowly varying’ inhomogeneous field of turbulence and the mean velocity distribution. The equations are based on the idea that turbulence can be characterized by ‘densities’ which obey nonlinear diffusion equations. The diffusion equations contain terms to describe the convection by the mean flow, the amplification due to interaction with a mean velocity gradient, the dissipation due to the interaction of the turbulence with itself, and the dif­fusion also due to the self interaction. The equations are similar to a set proposed by Kolmo­gorov (1942). It is assumed that both an ‘energy density’ and a ‘vorticity density’ satisfy diffusion equations, and that the self diffusion is described by an eddy viscosity which is a function of the energy and vorticity densities; the eddy viscosity is also assumed to describe the diffu­sion of mean momentum by the turbulent fluctuations. It is shown that with simple and plausible assumptions about the nature of the interaction terms, the equations form a closed set. The appropriate boundary conditions at a solid wall and a turbulent interface, with and without entrainment, are discussed. It is shown that the dimensionless constants which appear in the equations can all be estimated by general arguments. The equations are then found to predict the von Kármán constant in the law of the wall with reasonable accuracy. An analytical solution is given for Couette flow, and the result of a numerical study of plane Poiseuille flow is described. The equations are also applied to free turbulent flows. It is shown that the model equations completely determine the structure of the similarity solutions, with the rate of spread, for instance, determined by the solution of a nonlinear eigenvalue problem. Numerical solutions have been obtained for the two-dimensional wake and jet. The agreement with experiment is good. The solutions have a sharp interface between turbulent and non-turbulent regions and the mean velocity in the turbulent part varies linearly with distance from the interface. The equations are applied qualitatively to the accelerating boundary layer in flow towards a line sink, and the decelerating boundary layer with zero skin friction. In the latter case, the equations predict that the mean velocity should vary near the wall like the 5/3 power of the distance. It is shown that viscosity can be incorporated formally into the model equations and that a structure can be given to the interface between turbulent and non-turbulent parts of the flow.


Author(s):  
Franck C. G. A. Nicolleau ◽  
Stephen B. M. Beck ◽  
Andrzej F. Nowakowski

In this article we study the return to axi-symmetry for a flow generated after fractal plates in a circular wind tunnel. We consider two sets of plates: one orifice-like and one perforated-like. The mean velocity profiles are presented at different distances from the plate and we study the convergence of a flow rate based on these profiles. The return to axi-symmetry depends on how far was the original plate from an axi-symmetric design. It also depends on the level of iteration of the fractal pattern. In line with results for other flow properties [1, 2] It seems that there is not much to be gained by manufacturing fractal plates with more than three iteration levels.


2011 ◽  
Vol 8 (4) ◽  
pp. 6419-6442 ◽  
Author(s):  
T. H. Choo ◽  
I. J. Jeong ◽  
S. K. Chae ◽  
H. C. Yoon ◽  
H. S. Son

Abstract. This study proposed a new discharge estimation method using a mean velocity formula derived from Chiu's 2D velocity formula of probabilistic entropy concept and the river bed shear stress of channel. In particular, we could calculate the mean velocity, which is hardly measurable in flooding natural rivers, in consideration of several factors reflecting basic hydraulic characteristics such as river bed slope, wetted perimeter, width, and water level that are easily obtainable from rivers. In order to test the proposed method, we used highly reliable flow rate data measured in the field and published in SCI theses, estimated entropy M from the results of the mean velocity formula and, at the same time, calculated the maximum velocity. In particular, we obtained phi(M) expressing the overall equilibrium state of river through regression analysis between the maximum velocity and the mean velocity, and estimated the flow rate from the newly proposed mean velocity formula. The relation between estimated and measured discharge was analyzed through the discrepancy ratio, and the result showed that the estimate value was quite close to the measured data.


Author(s):  
Robert Rubinstein ◽  
Ye Zhou

A single-point model eddy viscosity model of rotation effects on the turbulent flow in an axially rotating pipe is developed based on two-point closure theories. Rotation is known to impede energy transfer in turbulence; this fact is reflected in the present model through a reduced eddy viscosity, leading to laminarization of the mean velocity profile and return to a laminar friction law in the rapid rotation limit. This model is compared with other proposals including linear redistribution effects through the rapid pressure-strain correlation, Richardson number modification of the eddy viscosity in a model of non-rotating turbulence, and the reduction of turbulence through the suppression of near-wall production mechanisms.


Sign in / Sign up

Export Citation Format

Share Document