Electrohydrodynamic Printing for Advanced Micro/Nanomanufacturing: Current Progresses, Opportunities, and Challenges

2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Yiwei Han ◽  
Jingyan Dong

The paper provides an overview of high-resolution electrohydrodynamic (EHD) printing processes for general applications in high-precision micro/nanoscale fabrication and manufacturing. Compared with other printing approaches, EHD printing offers many unique advantages and opportunities in the printing resolution, tunable printing modes, and wide material applicability, which has been successfully applied in numerous applications that include additive manufacturing, printed electronics, biomedical sensors and devices, and optical and photonic devices. In this review, the EHDs-based printing mechanism and the resulting printing modes are described, from which various EHD printing processes were developed. The material applicability and ink printability are discussed to establish the critical factors of the printable inks in EHD printing. A number of EHD printing processes and printing systems that are suitable for micro/nanomanufacturing applications are described in this paper. The recent progresses, opportunities, and challenges of EHD printing are reviewed for a range of potential application areas.

MRS Advances ◽  
2016 ◽  
Vol 1 (34) ◽  
pp. 2409-2414 ◽  
Author(s):  
Christopher Lefky ◽  
Galen Arnold ◽  
Owen Hildreth

ABSTRACTNano-inkjet printing using an Electrohydrodynamic's (EHD) pulsed cone-jet approach has the potential to bring affordable additive manufacturing to the micro and nanoscale. Ink technology is a major limitation of current EHD techniques. Specifically, most EHD printing processes print either nanoparticles or polymers. The materials are structurally weak and often have poor electrical or mechanical properties. For example, printing nanoparticles effectively creates a cluster of nanoparticles that must be sintered to create a continuous material. To address these issues, we have been adapting reactive inks to work with an EHD pulsed cone-jet. Specifically, we demonstrate that silver micron-scale structures can be printed using an EHD pulsed cone-jet regime. These inks produce solid structures without sintering steps and with good electrical properties.1,2 This work shows that reactive ink chemistries can be combined with EHD printing to produce fine-resolution features consisting of solid metal without an annealing step.


Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 474 ◽  
Author(s):  
Brice Le Borgne ◽  
Emmanuel Jacques ◽  
Maxime Harnois

The integration of electronics into the process flow of the additive manufacturing of 3D objects is demonstrated using water soluble films as a temporary flexible substrate. Three process variants are detailed to evaluate their capabilities to meet the additive manufacturing requirements. One of them, called water transfer printing, shows the best ability to fabricate electronics onto 3D additively manufactured objects. Moreover, a curved capacitive touchpad hidden by color films is successfully transferred onto the 3D objects, showing a potential application of this technology to fabricate fully additively manufactured discrete or even hidden electronic devices.


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


2018 ◽  
Vol 8 (7) ◽  
pp. 1200 ◽  
Author(s):  
Alfonso González ◽  
David Salgado ◽  
Lorenzo García Moruno ◽  
Alonso Sánchez Ríos

A study was carried out with 135 surgeons to obtain a surgical laparoscopic grasper handle design that adapts to the size of each surgeon’s hand, in a functionally appropriate way, and has the sufficient ergonomics to avoid generating the problems detected nowadays. The main conclusion of the work is the practical 3D parametric design obtained for a laparoscopic surgical graspers handle that is scalable to fit each particular surgeon's hand size. In addition, it has been possible to determine that the anthropometric measure of the surgeon's hand defined as Palm Length Measured (PLM) allows the design of the 3D parametric model of the surgical handle to be conveniently scaled. The results show that both additive manufacturing and the application of ergonomics criterion provide an efficient method for the custom design and manufacture of this type of specialised tool, with potential application in other sectors.


Author(s):  
Young Jin Yang ◽  
Hyung Chan Kim ◽  
Memoon Sajid ◽  
Soo wan Kim ◽  
Shahid Aziz ◽  
...  

Author(s):  
Christian Iffelsberger ◽  
Martin Pumera

It is demonstrate that following the principle of additive manufacturing, in high-resolution electrochemical additive manufacturing, MoSx structures can be constructed by electrochemically driven, localized and layered deposition of material.


Sign in / Sign up

Export Citation Format

Share Document