A Data-Driven, Statistical Feature-Based, Neural Network Method for Rotary Seal Prognostics

Author(s):  
Madhumitha Ramachandran ◽  
Zahed Siddique

Failure of the rotary seal is one of the foremost causes of breakdown in rotary machinery, and such a failure can be catastrophic, resulting in costly downtime and large expenses. Assessing the performance degradation of the rotary seal is very important for maintenance decision-making. Although significant progress has been made over the last 5 years to understand the degradation of seals using experimental verification and numerical simulation, there is a research gap on the data-driven-based tools and methods to assess the health condition of rotary seals. In this paper, we propose a data-driven-based performance degradation assessment approach to classify the running/health condition of rotary seals, which was not considered in the previous studies. Statistical time domain features are extracted from friction torque-based degradation signals collected from a rotary setup. Wrapper-based feature selection approach is used to select relevant features, with multilayer perceptron neural network utilized as a classification technique. To validate the proposed methodology, an accelerated aging and testing procedure is developed to capture the performance of rotary seals. The study findings indicate that multilayer perceptron (MLP) classifier built using features related to the amplitude of torque signal has a better classification accuracy for unseen data when compared with logistic regression and random forest classifiers.

Author(s):  
Madhumitha Ramachandran ◽  
Zahed Siddique

Abstract Rotary seals are found in many manufacturing equipment and machines used for various applications under a wide range of operating conditions. Rotary seal failure can be catastrophic and can lead to costly downtime and large expenses; so it is extremely important to assess the degradation of rotary seal to avoid fatal breakdown of machineries. Physics-based rotary seal prognostics require direct estimation of different physical parameters to assess the degradation of seals. Data-driven prognostics utilizing sensor technology and computational capabilities can aid in the in-direct estimation of rotary seals’ running condition unlike the physics-based approach. An important aspect of data-driven prognostics is to collect appropriate data in order to reduce the cost and time associated with the data collection, storage and computation. Seals in machineries operate in harsh conditions, especially in the oil field, seals are exposed to harsh environment and aggressive fluids which gradually reduces the elastic modulus and hardness of seals, resulting in lower friction torque and excessive leakage. Therefore, in this study we implement a data-driven prognostics approach which utilizes friction torque and leakage signals along with Multilayer Perceptron as a classifier to compare the performance of the two metrics in classifying the running condition of rotary seals. Friction torque was found to have a better performance than leakage in terms of differentiating the running condition of rotary seals throughout its service life. Although this approach was designed for seals in oil and gas industry, this approach can be implemented in any manufacturing industry with similar applications.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1499
Author(s):  
Yanran Jiang ◽  
Vincent Hernandez ◽  
Gentiane Venture ◽  
Dana Kulić ◽  
Bernard K. Chen

Fatigue increases the risk of injury during sports training and rehabilitation. Early detection of fatigue during exercises would help adapt the training in order to prevent over-training and injury. This study lays the foundation for a data-driven model to automatically predict the onset of fatigue and quantify consequent fatigue changes using a force plate (FP) or inertial measurement units (IMUs). The force plate and body-worn IMUs were used to capture movements associated with exercises (squats, high knee jacks, and corkscrew toe-touch) to estimate participant-specific fatigue levels in a continuous fashion using random forest (RF) regression and convolutional neural network (CNN) based regression models. Analysis of unseen data showed high correlation (up to 89%, 93%, and 94% for the squat, jack, and corkscrew exercises, respectively) between the predicted fatigue levels and self-reported fatigue levels. Predictions using force plate data achieved similar performance as those with IMU data; the best results in both cases were achieved with a convolutional neural network. The displacement of the center of pressure (COP) was found to be correlated with fatigue compared to other commonly used features of the force plate. Bland–Altman analysis also confirmed that the predicted fatigue levels were close to the true values. These results contribute to the field of human motion recognition by proposing a deep neural network model that can detect fairly small changes of motion data in a continuous process and quantify the movement. Based on the successful findings with three different exercises, the general nature of the methodology is potentially applicable to a variety of other forms of exercises, thereby contributing to the future adaptation of exercise programs and prevention of over-training and injury as a result of excessive fatigue.


2021 ◽  
Vol 11 (4) ◽  
pp. 1829
Author(s):  
Davide Grande ◽  
Catherine A. Harris ◽  
Giles Thomas ◽  
Enrico Anderlini

Recurrent Neural Networks (RNNs) are increasingly being used for model identification, forecasting and control. When identifying physical models with unknown mathematical knowledge of the system, Nonlinear AutoRegressive models with eXogenous inputs (NARX) or Nonlinear AutoRegressive Moving-Average models with eXogenous inputs (NARMAX) methods are typically used. In the context of data-driven control, machine learning algorithms are proven to have comparable performances to advanced control techniques, but lack the properties of the traditional stability theory. This paper illustrates a method to prove a posteriori the stability of a generic neural network, showing its application to the state-of-the-art RNN architecture. The presented method relies on identifying the poles associated with the network designed starting from the input/output data. Providing a framework to guarantee the stability of any neural network architecture combined with the generalisability properties and applicability to different fields can significantly broaden their use in dynamic systems modelling and control.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4916
Author(s):  
Ali Usman Gondal ◽  
Muhammad Imran Sadiq ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
...  

Urbanization is a big concern for both developed and developing countries in recent years. People shift themselves and their families to urban areas for the sake of better education and a modern lifestyle. Due to rapid urbanization, cities are facing huge challenges, one of which is waste management, as the volume of waste is directly proportional to the people living in the city. The municipalities and the city administrations use the traditional wastage classification techniques which are manual, very slow, inefficient and costly. Therefore, automatic waste classification and management is essential for the cities that are being urbanized for the better recycling of waste. Better recycling of waste gives the opportunity to reduce the amount of waste sent to landfills by reducing the need to collect new raw material. In this paper, the idea of a real-time smart waste classification model is presented that uses a hybrid approach to classify waste into various classes. Two machine learning models, a multilayer perceptron and multilayer convolutional neural network (ML-CNN), are implemented. The multilayer perceptron is used to provide binary classification, i.e., metal or non-metal waste, and the CNN identifies the class of non-metal waste. A camera is placed in front of the waste conveyor belt, which takes a picture of the waste and classifies it. Upon successful classification, an automatic hand hammer is used to push the waste into the assigned labeled bucket. Experiments were carried out in a real-time environment with image segmentation. The training, testing, and validation accuracy of the purposed model was 0.99% under different training batches with different input features.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 262
Author(s):  
Chih-Yung Huang ◽  
Zaky Dzulfikri

Stamping is one of the most widely used processes in the sheet metalworking industry. Because of the increasing demand for a faster process, ensuring that the stamping process is conducted without compromising quality is crucial. The tool used in the stamping process is crucial to the efficiency of the process; therefore, effective monitoring of the tool health condition is essential for detecting stamping defects. In this study, vibration measurement was used to monitor the stamping process and tool health. A system was developed for capturing signals in the stamping process, and each stamping cycle was selected through template matching. A one-dimensional (1D) convolutional neural network (CNN) was developed to classify the tool wear condition. The results revealed that the 1D CNN architecture a yielded a high accuracy (>99%) and fast adaptability among different models.


Sign in / Sign up

Export Citation Format

Share Document