Numerical Loss Investigation of a Small Scale, Low Specific Speed Supercritical CO2 Radial Inflow Turbine

Author(s):  
Joshua A. Keep ◽  
Ingo H. J. Jahn

Radial inflow turbines, characterized by a low specific speed, are a candidate architecture for the supercritical CO2 Brayton cycle at small scale, i.e., less than 5 MW. Prior cycle studies have identified the importance of turbine efficiency to cycle performance; hence, well-designed turbines are key in realizing this new cycle. With operation at high Reynolds numbers, and small scales, the relative importance of loss mechanisms in supercritical CO2 turbines is not known. This paper presents a numerical loss investigation of a 300 kW low specific speed radial inflow turbine operating on supercritical CO2. A combination of steady-state and transient calculations is used to determine the source of loss within the turbine stage. Losses are compared with preliminary design approaches, and geometric variations to address high loss regions of stator and rotor are trialed. Analysis shows stage losses to be dominated by endwall viscous losses in the stator. These losses are more significant than predicted using gas turbine derived preliminary design methods. A reduction in stator–rotor interspace and modification of the blade profile showed a significant improvement in stage efficiency. An investigation into rotor blading shows favorable performance gains through the inclusion of splitter blades. Through these, and other modifications, a stage efficiency of 81% is possible, with an improvement of 7.5 points over the baseline design.

Author(s):  
Leonid Moroz ◽  
Maksym Burlaka ◽  
Tishun Zhang ◽  
Olga Altukhova

Abstract To date variety of supercritical CO2 cycles were proposed by numerous authors. Multiple small-scale tests performed, and a lot of supercritical CO cycle aspects studied. Currently, 3-10 MW-scale test facilities are being built. However, there are still several pieces of SCO2 technology with the Technology Readiness Level (TRL) 3-5 and system modeling is one of them. The system modeling approach shall be sufficiently accurate and flexible, to be able to precisely predict the off-design and part-load operation of the cycle at both supercritical and condensing modes with diverse control strategies. System modeling itself implies the utilization of component models which are often idealized and may not provide a sufficient level of fidelity. Especially for prediction of off-design and part load supercritical CO2 cycle performance with near-critical compressor and transition to condensing modes with lower ambient temperatures, and other aspects of cycle operation under alternating grid demands and ambient conditions. In this study, the concept of a digital twin to predict off-design supercritical CO2 cycle performance is utilized. In particular, with the intent to have sufficient cycle simulation accuracy and flexibility the cycle simulation system with physics-based methods/modules were created for the bottoming 15.5 MW Power Generation Unit (PGU). The heat source for PGU is GE LM6000-PH DLE gas turbine. The PGU is a composite (merged) supercritical CO2 cycle with a high heat recovery rate, its design and the overall scheme are described in detail. The calculation methods utilized at cycle level and components’ level, including loss models with an indication of prediction accuracy, are described. The flowchart of the process of off-design performance estimation and data transfer between the modules as well. The comparison of the results obtained utilizing PGU digital twin with other simplified approaches is performed. The results of the developed digital twin utilization to optimize cycle control strategies and parameters to improve off-design cycle performance are discussed in detail.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Tina Unglaube ◽  
Hsiao-Wei D. Chiang

Abstract In recent years, supercritical CO2 (sCO2) Brayton cycles have drawn the attention of researchers due to their high cycle efficiencies, compact turbomachinery, and environmental friendliness. For small-scale cycles, radial inflow turbines (RIT) are the prevailing choice and one of the key components. A mean line design procedure for sCO2 RIT is developed and design space exploration conducted for a 100 kW-class turbine for a low-temperature waste-heat utilization sCO2 Brayton cycle. By varying the two design parameters, specific speed and velocity ratio, different turbine configurations are setup and compared numerically by means of computational fluid dynamics (CFD) simulations. Results are analyzed to conclude on optimum design parameters with regard to turbine efficiency and expansion ratio. Specific speeds between 0.2 and 0.5 are recommended for sCO2 RIT with small though flow (3 kg/s). The higher the velocity ratio, the bigger the turbine expansion ratio. Pairs of optimum design parameters that effectuate maximum efficiency are identified, with smaller velocity ratios prevailing for smaller specific speeds. The turbine simulation results for sCO2 are compared to well-established recommendations for the design of RIT from literature, such as the Balje diagram. It is concluded that for the design of sCO2 RITs, the same principles can be used as for those for air turbines. By achieving total-to-static stage and rotor efficiencies of 84% and 86%, respectively, the developed mean line design procedure has proven to be an effective and easily applicable tool for the preliminary design of small-scale sCO2 RIT.


Author(s):  
Cong Wang ◽  
Yongxue Zhang ◽  
Hucan Hou ◽  
Zhiyi Yuan

Low efficiency and bad cavitation performance restrict the development of the ultra-low specific-speed centrifugal pump (ULSSCP). In this research, combined turbulent boundary layer theory with two-dimension design and two-dimension viscous hydraulic design method has been proposed to redesign a ULSSCP. Through the solution of the displacement thickness in the boundary layer, a less curved blade profile with a larger outlet angle was obtained. Then the hydraulic and cavitation performance of the reference pump and the designed pump were numerically studied. The comparison of performance of the reference pump calculated by the numerical and experimental results revealed a better agreement. Research shows that the average hydraulic efficiency and head of the designed pump improve by 2.9% and 3.3%, respectively. Besides, the designed pump has a better cavitation performance. Finally, through the internal flow analysis with entropy production diagnostic model, a 24.8% drop in head loss occurred in the designed pump.


Author(s):  
Hucan Hou ◽  
Yongxue Zhang ◽  
Xin Zhou ◽  
Zhitao Zuo ◽  
Haisheng Chen

The ultra-low specific speed centrifugal pump has been widely applied in aerospace engineering, metallurgy, and other industrial fields. However, its hydraulic design lacks specialized theory and method. Moreover, the impeller and volute are designed separately without considering their coupling effect. Therefore, the optimal design is proposed in this study based on the local entropy production theory. Four geometrical parameters are selected to establish orthogonal design schemes including blade outlet setting angle, wrapping angle volute inlet width, and throat area. Subsequently, a 3D steady flow with Reynolds stress turbulent model and energy equation model is numerically conducted and the entropy production is calculated by a user-defined function code. The range analysis is made to identify the optimal scheme indicating that the combination of local entropy production and orthogonal design is feasible on pump optimization. The optimal pump is visibly improved with an increase of 1.08% in efficiency. Entropy production is decreased by 16.75% and 6.03% in impeller and volute, respectively. High energy loss areas are captured and explained in terms of helical vortex and wall friction, and the turbulent and wall entropy production are respectively reduced by 3.82% and 14.34% for the total pump.


2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


Author(s):  
Dong Liang ◽  
Zhao Yuqi ◽  
Liu Houlin ◽  
Dai Cui ◽  
Gradov D Vladimirovich ◽  
...  

In this research, super-low specific speed centrifugal pump ( ns = 25, Chinese units: ns = 3.6 nQ1/2/ H3/4) is studied. The effect of the front streamline wrapping angles variation (135°, 139° and 145°) of the turbine on energy performance is considered. The pressure pulsation, interior and exterior noise characteristics and the performance of the impeller are thoroughly evaluated both experimentally and numerically. The pump has been modeled by means of computational fluid dynamics code of commercial software ANSYS CFX 11.0 to estimate energy performance and pressure pulsation. Boundary element method and finite element method are used to investigate the interior and exterior noise characteristics of the centrifugal pump by varying the front sweep angle. The front sweep angle variation was found to have insignificant influence on centrifugal pump performance characteristics. However, it influences fluid hydrodynamics around the volute tongue. In addition, the decreasing of the front streamline sweep angle slightly reduces the sound pressure level for the exterior acoustics, but the radiation distribution of the acoustic field does not change. In its turn, the modified trailing edge of the blades can reduce the peak value of the superposition decreasing the pressure pulsations at the blade passing frequency and its harmonic frequencies.


2017 ◽  
Vol 821 ◽  
pp. 012027
Author(s):  
B Re ◽  
A Rurale ◽  
A. Spinelli ◽  
A. Guardone

Sign in / Sign up

Export Citation Format

Share Document