Analysis of Wave Action Through Multiple Submerged Porous Structures

Author(s):  
Mohamin B. M. Khan ◽  
Harekrushna Behera

Abstract Wave interaction with multiple bottom-standing rectangular porous structures of different structural parameters is numerically modeled using the multidomain boundary element method and the matched eigenfunction expansion method, while assuming linear water wave theory. The sensitivity of wave reflection and transmission to the wave and structural parameters is analyzed with the objective to maximize wave energy attenuation. Different configurations of multiple structures are tested for maximizing the efficiency of dissipation. Furthermore, wave trapping by multiple porous structures near a sloping rigid wall is studied. Bragg resonance is observed in the case of wave scattering by multiple structures irrespective of wave and structural parameters and is found as proportional to the number of structures deployed. In addition, the study reveals that in the presence of multiple structures, due to more wave energy dissipation, wave transmission in the lee side of the structures is reduced significantly when compared with that observed for a single structure.

Author(s):  
V. Venkateswarlu ◽  
D. Karmakar

Abstract The fluid oscillation between the rigid wall and stratified wave absorber is analyzed in the context of the linearized water wave theory. The stratified wave absorber is composed of multiple horizontal layers considering higher porosity in the surface layer, moderate porosity in the middle layer, and zero porosity in the bottom layer. The study examined the wave motion through multiple horizontally stratified wave absorbers on solving the multilayer dispersion relation. The eigenfunction expansion method is used to form the system of analytical equations using the property of orthogonal mode-coupling relation with continuity of dynamic pressure and velocity at each of the interfaces. The free spacing available between leeward porous wave absorber and the rigid wall is termed as “trapping chamber.” The effect of the trapping chamber on wave reflection and fluid force experienced by a rigid wall is discussed. The analytical results formulated for the physical problem are validated with the available experimental and numerical results. The wave trapping is examined and compared for three types of seawalls such as vertical wall, permeable wall, and stepped wall. The change in trapping chamber length shows the harmonic peaks and troughs in the trapping coefficients and the harmonic oscillations help in the design and development of the stratified porous wave absorbers for the protection of marine infrastructure.


1999 ◽  
Vol 386 ◽  
pp. 259-279 ◽  
Author(s):  
T. UTSUNOMIYA ◽  
R. EATOCK TAYLOR

Trapped modes around a row of bottom-mounted vertical circular cylinders in a channel are examined. The cylinders are identical, and their axes equally spaced in a plane perpendicular to the channel walls. The analysis has been made by employing the multipole expansion method under the assumption of linear water wave theory. At least the same number of trapped modes is shown to exist as the number of cylinders for both Neumann and Dirichlet trapped modes, with the exception that for cylinders having large radius the mode corresponding to the Dirichlet trapped mode for one cylinder will disappear. Close similarities between the Dirichlet trapped modes around a row of cylinders in a channel and the near-resonant phenomenon in the wave diffraction around a long array of cylinders in the open sea are discussed. An analogy with a mass–spring oscillating system is also presented.


Author(s):  
António F. O. Falcão ◽  
João C. C. Henriques

The oscillating-water-column (OWC) wave energy converter consists of a hollow (fixed or floating) structure, open to the sea below the water surface. Wave action alternately compresses and decompresses the air trapped above the inner water free-surface, which forces air to flow through a turbine coupled to a generator. The spring-like effect of air compressibility in the chamber is related to the density-pressure relationship. It is known to significantly affect the power performance of the full-sized converter, and is normally not accounted for in model testing at reduced scale. Three theoretical models of increasing complexity are analysed and compared: (i) the incompressible air model; (ii) the isentropic process model; (iii) and the (more difficult and rarely adopted) adiabatic non-isentropic process model in which losses due to the imperfectly efficient turbine are accounted for. The air is assumed as a perfect gas. The hydrodynamic modelling of wave energy absorption is based on linear water wave theory. The validity of the various simplifying assumptions, especially in the aero-thermodynamic domain, is examined and discussed. The validity of the three models is illustrated by a case study with numerical results for a fixed-structure OWC equipped with a Wells turbine subject to irregular waves.


Author(s):  
Valliboina Venkateswarlu ◽  
Debabrata Karmakar

The oblique wave reflection by horizontally stratified porous absorber having two horizontal porous bars of different porosities and friction factors placed on step-type bottom is studied using eigenfunction expansion method based on linearised wave theory. The present study examines several structural configurations such as porous absorber consisting of finite and semi-infinite thickness with/without seaward vertical barrier. The present study derived the direct analytical relations to determine wave reflection by each of the structural configuration for plane-wave assumption using potential flow theory. Initially, the porous absorber considering uniform porosity and friction factor is examined and validated with available numerical results, and the direct analytical relations are also validated with available relations of possible structural configurations. In addition, the present study reported wave reflection performance of submerged single-layer and double-layer porous absorbers with/without seaward vertical barrier. The effect of bottom rigid bar, surface porous bar, middle porous bar depth, multiple porosities, friction factors, incident wave angle and porous effect parameter on wave reflection coefficient is presented in detail for various structural configurations. The significance of seaward vertical barrier on wave reflection and wave trapping is reported. The point of wave trapping, critical angle of impinging, resonating peaks and troughs due to various structural configurations are presented against structural thickness.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
V. Venkateswarlu ◽  
K. G. Vijay ◽  
R. Raja Pandi ◽  
Chandra Shekhar Nishad

Abstract The gravity wave interaction with a flexible membrane placed at a finite distance from the partially reflecting seawall is analyzed under the framework of linear water wave theory using the multi-domain boundary element method (BEM). The flow through a flexible membrane is assumed to follow Darcy’s law in addition to membrane displacements. As a viable alternative to the existing wave dampers, the flexible membrane is examined for the effective dampening of incident waves. The correctness of the numerical results is affirmed with the known results available in the literature. The effect of membrane tension, submergence depth, membrane width, porosity, angle of inclination, and confined chamber spacing on hydrodynamic coefficients is discussed as a function of dimensionless wavenumber. The partially reflecting harbor wall diminishes the wave reflection coefficient in the long-wave regime. The increase in the flexible membrane width does not necessarily ensure the ideal wave capturing performance. A shift in the peak of the maximum deflection is observed with the increase of membrane width while there is a shift in peak outward for the increase in the submergence depth. Moreover, the maximum deflection is found to decrease with the increase in porosity, and it is 62% reduction for membrane porosity b = 1 due to the significant wave damping. The wave run-up and the wall force coefficients are found to be minimum when the relative plate width is B/h = 1. The present study is expected to be useful for the design of cost-effective wave attenuating systems.


Evaluation of hydrodynamic coefficients due to surge of submerged structure is great significant to designing a device which can be consider as a device of wave energy. In the present work, a theoretical approach is developed to describe radiation of water wave by fully submerged cylinder placed above a submerged circular plate in water of finite depth which is based on linear water wave theory The radiation problem due to surge motion by this pair of cylinders have investigated with the suspicion of linear water wave theory. To determine the radiated potentials in every area, we utilize the eigenfunction expansion method and variables separation method. Finally, we derived the analytical expressions of Hydrodynamic coefficients i. e. added mass and damping coefficient due to surge and associated unknown coefficients are calculated by utilizing the matching conditions between the physical and virtual boundaries. A set of added mass and damping coefficient have presented graphically for various radius of the submerge cylinder.


Author(s):  
K. M. Praveen ◽  
D. Karmakar ◽  
C. Guedes Soares

In the present study, the wave interaction with the very large floating structures (VLFSs) is analyzed considering the small amplitude wave theory. The VLFS is modeled as a 2D floating elastic plate with infinite width based on Timoshenko–Mindlin plate theory. The eigenfunction expansion method along with mode-coupling relation is used to analyze the hydroelastic behavior of VLFSs in finite water depth. The contour plots for the plate covered dispersion relation are presented to illustrate the complexity in the roots of the dispersion relation. The wave scattering behavior in the form of reflection and transmission coefficients are studied in detail. The hydroelastic performance of the elastic plate interacting with the ocean wave is analyzed for deflection, strain, bending moment, and shear force along the elastic plate. Further, the study is extended for shallow water approximation, and the results are compared for both Timoshenko–Mindlin plate theory and Kirchhoff’s plate theory. The significance and importance of rotary inertia and shear deformation in analyzing the hydroelastic characteristics of VLFSs are presented. The study will be helpful for scientists and engineers in the design and analysis of the VLFSs.


Author(s):  
Ramnarayan Mondal ◽  
Ken Takagi

This study deals with oblique and normal water wave scattering by a fixed submerged body of rectangular cross section which is infinite in length and finite in width. The fluid domain is considered as infinite as well as semi-infinite in nature. The study is carried out under the assumption of small amplitude linear water wave theory. It is considered that the bottom has a step and the submerged body is considered in shallower water depth region. The velocity potential is derived using the eigenfunction expansion method. The unknown constants, which appear in the expansion formulae, are obtained using orthogonal relation along with the boundary conditions at the interfaces. The wave-induced hydrodynamic forces acting on the submerged body and vertical wall are computed for different geometrical parameters. The wave reflection coefficient and the free surface motion are also calculated to see the wave phenomena around the submerged body.


2021 ◽  
Vol 222 ◽  
pp. 108619
Author(s):  
Milad Zabihi ◽  
Said Mazaheri ◽  
Masoud Montazeri Namin ◽  
Ahmad Rezaee Mazyak

1985 ◽  
Vol 107 (1) ◽  
pp. 34-41
Author(s):  
M. Takagi ◽  
K. Saito ◽  
S. Nakamura

Based on the linear water wave theory, numerical simulations are carried out for motions in waves of a body moored by a nonlinear-type mooring system. Numerical results obtained by using the equation of motion described in the time domain with a convolution integral (C.I. method) are compared with those of the second-order linear differential equation with constant coefficients (C. C. method). These results are also compared with experimental values measured from the initial stage when the action of exciting forces starts and the validity of C.I. method is discussed.


Sign in / Sign up

Export Citation Format

Share Document