scholarly journals Predicting Cycle-to-Cycle Variation With Concurrent Cycles in a Gasoline Direct Injected Engine With Large Eddy Simulations

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Daniel M. Probst ◽  
Sameera Wijeyakulasuriya ◽  
Eric Pomraning ◽  
Janardhan Kodavasal ◽  
Riccardo Scarcelli ◽  
...  

Abstract High cycle-to-cycle variation (CCV) is detrimental to engine performance, as it leads to poor combustion and high noise and vibration. In this work, CCV in a gasoline engine is studied using large eddy simulation (LES). The engine chosen as the basis of this work is a single-cylinder gasoline direct injection (GDI) research engine. Two stoichiometric part-load engine operating points (6 brake mean effective pressure (BMEP) and 2000 revolutions per minute) were evaluated: a nondilute (0% exhaust gas recirculation (EGR)) case and a dilute (18% EGR) case. The experimental data for both operating conditions had 500 cycles. The measured CCV in indicated mean effective pressure (IMEP) was 1.40% for the nondilute case and 7.78% for the dilute case. To estimate CCV from simulation, perturbed concurrent cycles of engine simulations were compared with consecutively obtained engine cycles. The motivation behind this is that running consecutive cycles to estimate CCV is quite time consuming. For example, running 100 consecutive cycles requires 2–3 months (on a typical cluster); however, by running concurrently, one can potentially run all 100 cycles at the same time and reduce the overall turnaround time for 100 cycles to the time taken for a single cycle (2 days). The goal of this paper is to statistically determine if concurrent cycles, with a perturbation applied to each individual cycle at the start, can be representative of consecutively obtained cycles and accurately estimate CCV. 100 cycles were run for each case to obtain statistically valid results. The concurrent cycles began at different timings before the combustion event, with the motivation to identify the closest time before spark to minimize the run time. Only a single combustion cycle was run for each concurrent case. The calculated standard deviation of peak pressure and coefficient of variance (COV) of IMEP were compared between the consecutive and concurrent methods to quantify CCV. It was found that the concurrent method could be used to predict CCV with either a velocity or numerical perturbation. Both a large and small velocity perturbations were compared, and both produced correct predictions, implying that the type of perturbation is not important to yield a valid realization. Starting the simulation too close to the combustion event, at intake valve close (IVC) or at spark timing, underpredicted the CCV. When concurrent simulations were initiated during or before the intake even, at start of injection (SOI) or earlier, distinct and valid realizations were obtained to accurately predict CCV for both operating points. By simulating CCV with concurrent cycles, the required wall clock time can be reduced from 2–3 months to 1–2 days. In addition, the required core-hours can be reduced up to 41%, since only a portion of each cycle needs to be simulated.

Author(s):  
Daniel Probst ◽  
Sameera Wijeyakulasuriya ◽  
Eric Pomraning ◽  
Janardhan Kodavasal ◽  
Riccardo Scarcelli ◽  
...  

High cycle-to-cycle variation (CCV) is detrimental to engine performance, as it leads to poor combustion and high noise and vibration. In this work, CCV in a gasoline engine is studied using large eddy simulation (LES). The engine chosen as the basis of this work is a single-cylinder gasoline direct injection (GDI) research engine. Two stoichiometric part-load engine operating points (6 BMEP, 2000 RPM) were evaluated: a non-dilute (0% EGR) case and a dilute (18% EGR) case. The experimental data for both operating conditions had 500 cycles. The measured CCV in IMEP was 1.40% for the non-dilute case and 7.78% for the dilute case. To estimate CCV from simulation, perturbed concurrent cycles of engine simulations were compared to consecutively obtained engine cycles. The motivation behind this is that running consecutive cycles to estimate CCV is quite time-consuming. For example, running 100 consecutive cycles requires 2–3 months (on a typical cluster), however, by running concurrently one can potentially run all 100 cycles at the same time and reduce the overall turnaround time for 100 cycles to the time taken for a single cycle (2 days). The goal of this paper is to statistically determine if concurrent cycles, with a perturbation applied to each individual cycle at the start, can be representative of consecutively obtained cycles and accurately estimate CCV. 100 cycles were run for each case to obtain statistically valid results. The concurrent cycles began at different timings before the combustion event, with the motivation to identify the closest time before spark to minimize the run time. Only a single combustion cycle was run for each concurrent case. The calculated standard deviation of peak pressure and coefficient of variance (COV) of indicated mean effective pressure (IMEP) were compared between the consecutive and concurrent methods to quantify CCV. It was found that the concurrent method could be used to predict CCV with either a velocity or numerical perturbation. A large and small velocity perturbation were compared and both produced correct predictions, implying that the type of perturbation is not important to yield a valid realization. Starting the simulation too close to the combustion event, at intake valve close (IVC) or at spark timing, under-predicted the CCV. When concurrent simulations were initiated during or before the intake even, at start of injection (SOI) or earlier, distinct and valid realizations were obtained to accurately predict CCV for both operating points. By simulating CCV with concurrent cycles, the required wall clock time can be reduced from 2–3 months to 1–2 days. Additionally, the required core-hours can be reduced up to 41%, since only a portion of each cycle needs to be simulated.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110381
Author(s):  
Li Wang ◽  
Zhaoming Huang ◽  
Wang Tao ◽  
Kai Shen ◽  
Weiguo Chen

EGR and excess-air dilution have been investigated in a 1.5 L four cylinders gasoline direct injection (GDI) turbocharged engine equipped with prechamber. The influences of the two different dilution technologies on the engine performance are explored. The results show that at 2400 rpm and 12 bar, EGR dilution can adopt more aggressive ignition advanced angle to achieve optimal combustion phasing. However, excess-air dilution has greater fuel economy than that of EGR dilution owing to larger in-cylinder polytropic exponent. As for prechamber, when dilution ratio is greater than 37.1%, the combustion phase is advanced, resulting in fuel economy improving. Meanwhile, only when the dilution ratio is under 36.2%, the HC emissions of excess-air dilution are lower than the original engine. With the increase of dilution ratio, the CO emissions decrease continuously. The NOX emissions of both dilution technologies are 11% of those of the original engine. Excess-air dilution has better fuel economy and very low CO emissions. EGR dilution can effectively reduce NOX emissions, but increase HC emissions. Compared with spark plug ignition, the pre chamber ignition has lower HC, CO emissions, and higher NO emissions. At part load, the pre-chamber ignition reduces NOX emissions to 49 ppm.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Nikhil Sharma ◽  
Avinash Kumar Agarwal

Abstract Fuel availability, global warming, and energy security are the three main driving forces, which determine suitability and long-term implementation potential of a renewable fuel for internal combustion engines for a variety of applications. Comprehensive engine experiments were conducted in a single-cylinder gasoline direct injection (GDI) engine prototype having a compression ratio of 10.5, for gaining insights into application of mixtures of gasoline and primary alcohols. Performance, emissions, combustion, and particulate characteristics were determined at different engine speeds (1500, 2000, 2500, 3000 rpm), different fuel injection pressures (FIP: 40, 80, 120, 160 bars) and different test fuel blends namely 15% (v/v) butanol, ethanol, and methanol blended with gasoline, respectively (Bu15, E15, and M15) and baseline gasoline at a fixed (optimum) spark timing of 24 deg before top dead center (bTDC). For a majority of operating conditions, gasohols exhibited superior characteristics except minor engine performance penalty. Gasohols therefore emerged as serious candidate as a transitional renewable fuel for utilization in the existing GDI engines, without requirement of any major hardware changes.


2015 ◽  
Vol 713-715 ◽  
pp. 239-242 ◽  
Author(s):  
Wei Bo Shi ◽  
Xiu Min Yu ◽  
Ping Sun

Hydrogen-gasoline blends is an effective way to improving the performance of spark ignition engine at stoichiometric and lean conditions. Spark timing is one of the important parameters affect the engine performance. This paper investigated the effect of spark timing on performance of a hydrogen-gasoline engine. A four cylinder, gasoline direct injection engine was modified to be a gasoline port injection, hydrogen direct injection engine. The hydrogen energy fraction was set as 0% and 30%. For a specified hydrogen addition, the engine was operated at four excess air ratios of 0.8, 1.0, 1.2 and 1.5. Under the specified excess air ratio condition, the spark timing was varied from 4 to 19°CA before top dead center (BTDC) with an interval of 3°CA. The test result showed that the indicated mean effective pressure (IMEP) climb up and then decline with the increase of spark advance. For hydrogen-gasoline engine, the optimum spark timing for the max IMEP was retarded at a specified excess air ratio. The max thermal efficiency appeared at the optimum spark timing.


Author(s):  
Shima Nazari ◽  
Anna Stefanopoulou ◽  
Jason Martz

Turbocharging and downsizing (TRBDS) a gasoline direct injection (GDI) engine can reduce fuel consumption but with increased drivability challenges compared to larger displacement engines. This tradeoff between efficiency and drivability is influenced by the throttle-wastegate control strategy. A more severe tradeoff between efficiency and drivability is shown with the introduction of Low-Pressure Exhaust Gas Recirculation (LP-EGR). This paper investigates and quantifies these trade-offs by designing and implementing in a one-dimensional (1D) engine simulation two prototypical throttle-wastegate strategies that bound the achievable engine performance with respect to efficiency and torque response. Specifically, a closed-wastegate (WGC) strategy for the fastest achievable response and a throttle-wastegate strategy that minimizes engine backp-pressure (MBWG) for the best fuel efficiency, are evaluated and compared based on closed loop response. The simulation of an aggressive tip-in (the driver’s request for torque increase) shows that the wastegate strategy can negotiate a 0.8% efficiency gain at the expense of 160 ms slower torque response both with and without LP-EGR. The LP-EGR strategy, however offers a substantial 5% efficiency improvement followed by an undesirable 1 second increase in torque time response, clarifying the opportunities and challenges associated with LP-EGR.


Author(s):  
Daniel Probst ◽  
Sameera Wijeyakulasuriya ◽  
Pinaki Pal ◽  
Christopher Kolodziej ◽  
Eric Pomraning

Abstract Knock is a major design challenge for spark-ignited engines. Knock constrains high load operation and limits efficiency gains that can be achieved by implementing higher compression ratios. The propensity to knock depends on the interaction among fuel properties, engine geometry, and operating conditions. Moreover, cycle-to-cycle variability (CCV) in knock intensity is commonly encountered under abnormal combustion conditions. In this situation, knock needs to be assessed with multiple engine cycles. Therefore, when using computational fluid dynamics (CFD) to predict knock behavior, multi-cycle simulations must be performed. The wall clock time for simulating multiple consecutive engine cycles is prohibitive, especially for a statistically valid sample size (i.e. 30–100 cycles). In this work, 3-d CFD simulations were used to model knocking phenomena in the cooperative fuel research (CFR) engine. Unsteady Reynolds-Averaged Navier Stokes (uRANS) simulations were performed with a hybrid combustion modeling approach using the G-equation method to track the turbulent flame front and finite-rate chemistry model to predict end-gas autoignition. To circumvent the high cost of running simulations with a large number of consecutive engine cycles, a concurrent perturbation method (CPM) was evaluated to predict knock CCV. The CPM was based on previous work by the authors, in which concurrent engine cycles were used to predict engine CCV in a non-knocking gasoline direct injection (GDI) engine. Concurrent cycles were initialized by perturbing a saved flow field with a random isotropic velocity field. By initializing each cycle with a perturbation sufficiently early in the cycle, each case yields a distinct and valid prediction of combustion due to the chaotic nature of the system. Three operating points were simulated, with different spark timings corresponding to heavy knock, light knock, and no knock. For all the operating points, other conditions were based on the standard research octane number (RON) test specification for iso-octane. The spark timing of the heavy knock case was the same as that of the RON test. The in-cylinder pressure fluctuations were isolated using a frequency filtering method. A bandpass filter was applied to eliminate high and low frequencies. The knocking pressures were calculated consistently between the experimental and simulation data, including the sampling frequency of the data. The simulation data was sampled to match the sampling rate of the experimental data. The knock intensities were compared for the concurrently obtained cycles, the consecutively obtained cycles, and experimental cycles. Knock predictions from the concurrent and consecutive simulations compared well to each other and with experiments, thereby demonstrating the validity of the CPM approach.


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 543-553 ◽  
Author(s):  
Helin Xiao ◽  
Pengfei Zeng ◽  
Liangrui Zhao ◽  
Zhongzhao Li ◽  
Xiaowei Fu

Experiments were carried out in a direct injection compression ignition engine fueled with diesel-dimethylfuran blends. The combustion and emission performances of diesel-dimethylfuran blends were investigated under various loads ranging from 0.13 to 1.13 MPa brake mean effective pressure, and a constant speed of 1800 rpm. Results indicate that diesel-dimethylfuran blends have different combustion performance and produce longer ignition delay and shorter combustion duration compared with pure diesel. Moreover, a slight increase of brake specific fuel consumption and brake thermal efficiency occurs when a Diesel engine operates with blended fuels, rather than diesel fuel. Diesel-dimethylfuran blends could lead to higher NOx emissions at medium and high engine loads. However, there is a significant reduction in soot emission when engines are fueled with diesel-dimethylfuran blends. Soot emissions under each operating conditions are similar and close to zero except for D40 at 0.13 MPa brake mean effective pressure. The total number and mean geometric diameter of emitted particles from diesel-dimethylfuran blends are lower than pure diesel. The tested fuels exhibit no significant difference in either CO or HC emissions at medium and high engine loads. Nevertheless, diesel fuel produces the lowest CO emission and higher HC emission at low loads of 0.13 to 0.38 MPa brake mean effective pressure.


Author(s):  
B-Z Li ◽  
S-H Liu ◽  
J-J Nong ◽  
Y-F Gong ◽  
L-B Zhou

On the basis of the wall-guided, spray-guided, and air-guided technologies related to gasoline direct-injection spark-ignition (DISI) engines, a complex-guided stratified-charge combustion system for a methanol DISI engine was developed. The test engine was a retrofitted four-cylinder diesel engine. The key parameters were optimized numerically and experimentally, such as the location of the swirl deflector, the spatial location of spray, the swirl ratio, the injection and ignition timings, and the needle valve opening pressure. The results show that the direct-injection stratified-charge (DISC) methanol engine can work with an excessive air ratio λ as high as 2.23, and its brake thermal efficiency reaches 29.7 per cent at a speed of 1500r/min, and a brake mean effective pressure of 0.45MPa. The DISC methanol engine exhibits relatively good performance with little cyclic variations, although it is sensitive to induction swirl. The test results indicate that the matching principle is successful. The developed DISC methanol engine can run under variable induction swirl to meet the requirement of stratification combustion under different engine speed operating conditions.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Lei Zhou ◽  
Aifang Shao ◽  
Jianxiong Hua ◽  
Haiqiao Wei ◽  
Dengquan Feng

In spark ignition engines, gasoline direct injection (GDI) is surely the most attractive technology to achieve the demand of high energy efficiency by directly injecting fuel into combustion chamber. This work, as a preliminary study, investigates the effect of retarded injection timing on knock resistance and cycle-to-cycle variation in gasoline engine by experimental method. The retarded injection timing during compression stroke coupled with increased intake air temperature was employed to concentrate on suppressing knock occurrence with stable combustion. Based on the great advantage of injection timing retard on knock suppression, intake temperature was used in this work to reduce cycle-to-cycle variation. In addition, piezo-electrically actuated injector was employed. The results show that injection timing retard during compression stroke can significantly suppress the knock tendency, but combustion becomes unstable and cycle-to-cycle variation is larger than 10%. Thus, increasing intake temperature decreased the cycle-to-cycle variation but increased significantly the knock tendency, as expect. Meanwhile, rich fuel–air mixture in this work also had the same effect as intake temperature did. It can be concluded that retarded injection timing is of significant potential to suppress the knock in GDI engine, although the high intake temperature causes high probability of large knock occurrence. The percentages of knock at the spark timings of 24 °CA before top dead center (BTDC) and 26 °CA BTDC were significantly reduced from approximately 40% to 7% and from approximately 60% to 10%, respectively. Furthermore, the retarded injection timing not only reduced the probability of knock occurrence, but also decreased the knock intensity obviously.


Author(s):  
Enrico Corti ◽  
Claudio Forte

Engine performance and efficiency are largely influenced by combustion phasing. Operating conditions and control settings influence the combustion development over the crankshaft angle; the most effective control parameter used by electronic control units to optimize the combustion process for spark ignition engines is spark advance (SA). SA mapping is a time-consuming process, usually carried out with the engine running in steady state on the test bench, changing SA values while monitoring brake mean effective pressure, indicated mean effective pressure (IMEP), and brake specific fuel consumption (BSFC). Mean values of IMEP and BSFC for a test carried out with a given SA setting are considered as the parameters to optimize. However, the effect of SA on IMEP and BSFC is not deterministic, due to the cycle-to-cycle variation; the analysis of mean values requires many engine cycles to be significant of the performance obtained with the given control setting. Finally, other elements such as engine or components aging, and disturbances like air-to-fuel ratio or air, water, and oil temperature variations could affect the tests results; this facet can be very significant for racing engine testing. This paper presents a novel approach to SA mapping with the objective of improving the performance analysis robustness while reducing the test time. The methodology is based on the observation that, for a given running condition, IMEP can be considered a function of the combustion phasing, represented by the 50% mass fraction burned (MFB50) parameter. Due to cycle-to-cycle variation, many different MFB50 and IMEP values are obtained during a steady state test carried out with constant SA. While MFB50 and IMEP absolute values are influenced by disturbance factors, the relationship between them holds, and it can be synthesized by means of the angular coefficient of the tangent line to the MFB50-IMEP distribution. The angular coefficient variations as a function of SA can be used to feed a SA controller, able to maintain the optimal combustion phasing. Similarly, knock detection is approached by evaluating two indexes; the distribution of a typical knock-sensitive parameter (maximum amplitude of pressure oscillations) is related to that of CHRNET (net cumulative heat release), determining a robust knock index. A knock limiter controller can then be added in order to restrict the SA range to safe values. The methodology can be implemented in real time combustion controllers; the algorithms have been applied offline to sampled data, showing the feasibility of fast and robust automatic mapping procedures.


Sign in / Sign up

Export Citation Format

Share Document