Guidelines for Design of Dividing Manifolds With Discharge Uniformly Distributed at Different Positions Along the Device Axis

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Honggang Yang ◽  
Yi Wang ◽  
Xiaojing Meng ◽  
Dong Li ◽  
Xiaofan Cai

Abstract For practical operation of dividing manifolds, the discharge uniformity is a property generally required. To investigate the dependence of discharge uniformity on the manifold geometry and operating conditions, analytical solution to the governing equation, Bajura's equation, was secured. Furthermore, examples were derived by substituting experimental data into the analytical solutions; the resultant curves of discharge distribution indicated essential agreement between the theoretical and experimental results. For evaluating the property of discharge distribution, a uniformity index, U, was introduced. The calculated results of U showed a well-defined dependence of uniformity on the dimensionless parameter, γ, and a maximum of U presented around 1.44 of γ.

1974 ◽  
Vol 188 (1) ◽  
pp. 477-483 ◽  
Author(s):  
H. Çakir

A combustion model is presented to account for the nitric oxide formation in diesel engines at all operating conditions. The paper tries to introduce the concept of variable air-fuel ratio estimated to exist during diesel combustion. Analytical solutions are found to be in good agreement with experimental results. Further investigations will be directed to diesel engines having combustion systems other than the M.A.N.-FM system, and to possible remedies to reduce the formation of nitrogen oxides.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
B. Merk ◽  
V. Glivici-Cotruţă

The different analytical solutions without space-time separation foreseen for the analysis of ADS experiments are described. The SC3A experiment in the YALINA-Booster facility is described and investigated. For this investigation the very special configuration of YALINA-Booster is analyzed based on HELIOS calculations. The results for the time dependent diffusion and the time dependentP1equation are compared with the experimental results for the SC3A configuration. A comparison is given for the deviation between the analytical solution and the experimental results versus the different transport approximations. To improve the representation to the special configuration of YALINA- Booster, a new analytical solution for two energy groups with two sources (central external and boundary source) has been developed starting form the Green's function solution. Very good agreement has been found for these improved analytical solutions.


2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Mark Aaron Chan ◽  
Christopher R. Yap ◽  
Kim Choon Ng

Abstract This study presents a generalized confined boiling correlation applicable for various working fluids and operating conditions. A dimensionless parameter, Bond number, has been incorporated into the correlation to include the effects of confinement in the ebullition process of boiling. The proposed correlation is compared with an existing correlation based on their capability in predicting confined boiling data from the literature. A phenomenon of heat transfer coefficient stagnation is found for boiling in narrow spaces despite an increase in heat flux. Results show that the proposed correlation entails an excellent agreement with experimental data, and the predictions have a reasonably low mean absolute error of 17.3% for the entire database.


2005 ◽  
Vol 42 (6) ◽  
pp. 1705-1717 ◽  
Author(s):  
Li Li ◽  
Michel Aubertin ◽  
Tikou Belem

The mechanical response of backfill in narrow openings is significantly influenced by its interaction with the surrounding walls. Previous work conducted on backfilled trenches and mining stopes indicates that the theory of arching can be used to estimate earth pressures in narrow, vertical backfilled openings. In this paper, a 3D analytical solution is proposed to evaluate the state of stress along the boundaries of the openings. The proposed solution, based on a generalized version of the Marston approach, is compared with numerical modeling and laboratory experimental results taken from the literature. A discussion follows on some particular features and limitations of the analytical solutions.Key words: backfill, earth pressure, 3D openings, analytical solutions, trenches, mining stopes.


Author(s):  
Yiqi Cheng ◽  
Xinhua Wang ◽  
Waheed Ur Rehman ◽  
Tao Sun ◽  
Hasan Shahzad ◽  
...  

This study presents a novel cylindrical vane pump based on the traditional working principle. The efficiency of the cylindrical vane pump was verified by experimental validation and numerical analysis. Numerical analysis, such as kinematics analysis, was performed in Pro/Mechanism and unsteady flow-field analysis was performed using ANSYS FLUENT. The stator surface equations were derived using the geometric theory of the applied spatial triangulation function. A three-dimensional model of the cylindrical vane pump was established with the help of MATLAB and Pro/E. The kinematic analysis helped in developing kinematic equations for cylindrical vane pumps and proved the effectiveness of the structural design. The maximum inaccuracy error of the computational fluid dynamics (CFD) model was 5.7% compared with the experimental results, and the CFD results show that the structure of the pump was reasonable. An experimental test bench was developed, and the results were in excellent agreement with the numerical results of CFD. The experimental results show that the cylindrical vane pump satisfied the three-element design of a positive-displacement pump and the trend of changes in efficiency was the same for all types of efficiency under different operating conditions. Furthermore, the volumetric efficiency presented a nonlinear positive correlation with increased rotational velocity, the mechanical efficiency showed a nonlinear negative correlation, and the total efficiency first increased and then decreased. When the rotational velocity was 1.33[Formula: see text] and the discharge pressure was 0.68[Formula: see text], the total efficiency reached its maximum value.


1983 ◽  
Vol 105 (1) ◽  
pp. 29-33 ◽  
Author(s):  
A. M. Clausing

Cavity solar receivers are generally believed to have higher thermal efficiencies than external receivers due to reduced losses. A simple analytical model was presented by the author which indicated that the ability to heat the air inside the cavity often controls the convective loss from cavity receivers. Thus, if the receiver contains a large amount of inactive hot wall area, it can experience a large convective loss. Excellent experimental data from a variety of cavity configurations and orientations have recently become available. These data provided a means of testing and refining the analytical model. In this manuscript, a brief description of the refined model is presented. Emphasis is placed on using available experimental evidence to substantiate the hypothesized mechanisms and assumptions. Detailed comparisons are given between analytical predictions and experimental results. Excellent agreement is obtained, and the important mechanisms are more clearly delineated.


1963 ◽  
Vol 18 (4) ◽  
pp. 531-538
Author(s):  
Dallas T. Hayes

Localized solutions of the BETHE—GOLDSTONE equation for two nucleons in nuclear matter are examined as a function of the center-of-mass momentum (c. m. m.) of the two nucleons. The equation depends upon the c. m. m. as parameter due to the dependence upon the c. m. m. of the projection operator appearing in the equation. An analytical solution of the equation is obtained for a non-local but separable potential, whereby a numerical solution is also obtained. An approximate solution for small c. m. m. is calculated for a square-well potential. In the range of the approximation the two analytical solutions agree exactly.


1993 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
N.A. Hoenich ◽  
P.T. Smirthwaite ◽  
C. Woffindin ◽  
P. Lancaster ◽  
T.H. Frost ◽  
...  

Recirculation is an important factor in single needle dialysis and, if high, can compromise treatment efficiency. To provide information regarding recirculation characteristics of access devices used in single needle dialysis, we have developed a new technique to characterise recirculation and have used this to measure the recirculation of a Terumo 15G fistula needle and a VasCath SC2300 single lumen catheter. The experimentally obtained results agreed well with those established clinically (8.5 ± 2.4% and 18.4 ± 3.4%). The experimental results have also demonstrated a dependence on access type, pump speeds and fistula flow rate. A comparison of experimental data with theoretical predictions showed that the latter exceeded those measured with the largest contribution being due to the experimental fistula.


Author(s):  
Farrokh Zarifi-Rad ◽  
Hamid Vajihollahi ◽  
James O’Brien

Scale models give engineers an excellent understanding of the aerodynamic behavior behind their design; nevertheless, scale models are time consuming and expensive. Therefore computer simulations such as Computational Fluid Dynamics (CFD) are an excellent alternative to scale models. One must ask the question, how close are the CFD results to the actual fluid behavior of the scale model? In order to answer this question the engineering team investigated the performance of a large industrial Gas Turbine (GT) exhaust diffuser scale model with performance predicted by commercially available CFD software. The experimental results were obtained from a 1:12 scale model of a GT exhaust diffuser with a fixed row of blades to simulate the swirl generated by the last row of turbine blades five blade configurations. This work is to validate the effect of the turbulent inlet conditions on an axial diffuser, both on the experimental front and on the numerical analysis approach. The object of this work is to bring forward a better understanding of velocity and static pressure profiles along the gas turbine diffusers and to provide an accurate experimental data set to validate the CFD prediction. For the CFD aspect, ANSYS CFX software was chosen as the solver. Two different types of mesh (hexagonal and tetrahedral) will be compared to the experimental results. It is understood that hexagonal (HEX) meshes are more time consuming and more computationally demanding, they are less prone to mesh sensitivity and have the tendancy to converge at a faster rate than the tetrahedral (TET) mesh. It was found that the HEX mesh was able to generate more consistent results and had less error than TET mesh.


Author(s):  
Hossein Gholizadeh ◽  
Doug Bitner ◽  
Richard Burton ◽  
Greg Schoenau

It is well known that the presence of entrained air bubbles in hydraulic oil can significantly reduce the effective bulk modulus of hydraulic oil. The effective bulk modulus of a mixture of oil and air as pressure changes is considerably different than when the oil and air are not mixed. Theoretical models have been proposed in the literature to simulate the pressure sensitivity of the effective bulk modulus of this mixture. However, limited amounts of experimental data are available to prove the validity of the models under various operating conditions. The major factors that affect pressure sensitivity of the effective bulk modulus of the mixture are the amount of air bubbles, their size and the distribution, and rate of compression of the mixture. An experimental apparatus was designed to investigate the effect of these variables on the effective bulk modulus of the mixture. The experimental results were compared with existing theoretical models, and it was found that the theoretical models only matched the experimental data under specific conditions. The purpose of this paper is to specify the conditions in which the current theoretical models can be used to represent the real behavior of the pressure sensitivity of the effective bulk modulus of the mixture. Additionally, a new theoretical model is proposed for situations where the current models fail to truly represent the experimental data.


Sign in / Sign up

Export Citation Format

Share Document