Label-Free cDNA Detection Based on Radiofrequency Scattering Parameters: A New Approach for an Inexpensive Gene Sensor

2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Rima Gnaim ◽  
Julia Sheviryov ◽  
Alexander Golberg ◽  
Gerardo Ames ◽  
Moshe Oziel ◽  
...  

Abstract A new gene detection technique that is fast, inexpensive, and easy-to-use is urgently needed in hospitals, clinics, and laboratories without access to expensive equipments. The lack of a practical, minimally invasive, and economical method constitutes the main impediment to the promotion of genetic medicine in developing countries. Radiofrequency scattering parameters are an inexpensive gene sensor potentially capable of noninvasively identifying biological materials. They represent a quantitative value for the electromagnetic reflection/transmission characteristics of certain molecular markers in a given frequency domain. The S21 parameter is the difference between the signal received and that transmitted. The aim of this study is to evaluate the S21 transmittance parameters (magnitude and phase) as an indirect impedance measurement for detecting the label-free complementary deoxyribonucleic acid (cDNA) amplification of the 16S ribosomal subunit gene. S21 values showed differences associated with distinct cDNA concentrations. Hence, this technique could possibly facilitate the design of an inexpensive, label-free, and easy-to-use gene sensor.

2018 ◽  
pp. 5-29 ◽  
Author(s):  
L. M. Grigoryev ◽  
V. A. Pavlyushina

The phenomenon of economic growth is studied by economists and statisticians in various aspects for a long time. Economic theory is devoted to assessing factors of growth in the tradition of R. Solow, R. Barrow, W. Easterly and others. During the last quarter of the century, however, the institutionalists, namely D. North, D. Wallis, B. Weingast as well as D. Acemoglu and J. Robinson, have shown the complexity of the problem of development on the part of socioeconomic and political institutions. As a result, solving the problem of how economic growth affects inequality between countries has proved extremely difficult. The modern world is very diverse in terms of development level, and the article offers a new approach to the formation of the idea of stylized facts using cluster analysis. The existing statistics allows to estimate on a unified basis the level of GDP production by 174 countries of the world for 1992—2016. The article presents a structured picture of the world: the distribution of countries in seven clusters, different in levels of development. During the period under review, there was a strong per capita GDP growth in PPP in the middle of the distribution, poverty in various countries declined markedly. At the same time, in 1992—2016, the difference increased not only between rich and poor groups of countries, but also between clusters.


Linguistics ◽  
2020 ◽  
Vol 58 (6) ◽  
pp. 1701-1735
Author(s):  
Jeroen van de Weijer ◽  
Weiyun Wei ◽  
Yumeng Wang ◽  
Guangyuan Ren ◽  
Yunyun Ran
Keyword(s):  

AbstractIn this article we present a new approach to words of the type zigzag, chitchat, etc. in English. Such words form a formal (phonological) and functional (semantic) pattern in English. We argue that this pattern should be analysed in a construction-based approach, which has clear advantages over other approaches, e.g. analyses involving extragrammaticality or a synchronically productive reduplication process. We propose to extend the construction-based approach beyond its original scope (syntactic constructions) to words that may even no longer be morphologically complex. Finally, we make a tentative suggestion about how the difference between productive and unproductive patterns could be captured in the construction-based approach.


2021 ◽  
Vol 7 (2) ◽  
pp. 496-499
Author(s):  
Stadler B. Eng. Sebastian ◽  
Herbert Plischke ◽  
Christian Hanshans

Abstract Bioimpedance analysis is a label-free and easy approach to obtain information on cellular barrier integrity and cell viability more broadly. In this work, we introduce a small, low-cost, portable in vitro impedance measurement system for studies where a shadow-free exposure of the cells is a requirement. It can be controlled by a user-friendly web interface and can perform measurements automated and autonomously at short intervals. The system can be integrated into an existing IoT network for remote monitoring and indepth analyses. A single-board computer (SBC) serves as the central unit, to control, analyze, store and forward the measurement data from the single-chip impedance analyzer. Various materials and manufacturing methods were used to produce a purpose-built lid on top of a modified 24-well microtiter plate in a “do it yourself” fashion. Furthermore, three different sensor designs were developed utilizing anodic aluminum oxide (AAO) membranes and gold-plated electrodes. Preliminary tests with potassium chloride (KCl) showed first promising results.


1974 ◽  
Vol 16 (6) ◽  
pp. 391-401 ◽  
Author(s):  
P. M. Came ◽  
H. Marsh

By considering a many-bladed cascade, two simple theories are developed for secondary flow in cascades. Following the work of Hawthorne (1)†, three components of vorticity are identified at exit from the cascade. An expression is obtained for the difference in the time taken for fluid particles to travel over the two surfaces of the blade, and this is used to derive the governing equations for the distributed secondary, trailing filament and trailing shed vorticities. It is shown that, for a many-bladed cascade, the total secondary circulation in the downstream flow is zero. The calculation of secondary flow for a real cascade is discussed, and it is shown that earlier calculations of secondary flow at exit from cascades are consistent with this new approach.


Development ◽  
1967 ◽  
Vol 17 (3) ◽  
pp. 533-541
Author(s):  
M. S. Deol

Although the origin of the acoustic ganglion has been the subject of numerous studies there is no unanimity of opinion about it. Most of the earlier investigators (Bartelmez, 1922; Adelman, 1925), using mammalian embryos, believed that it arose from the neural crest, but the experiments of Campenhout (1935) and Yntema (1937) on amphibian embryos led them to the view that it was largely, if not wholly, of placodal origin. This view was supported by Halley (1955), who worked on the cat, and later by Batten (1958), who worked on the sheep. In fact Batten stated categorically that the otic placode was the sole source of the acoustic ganglion. It was thought that an entirely new approach to the problem, namely the use of mutant genes, might help to resolve the difference of opinion. The most suitable mutant for the present purpose seemed to be piebald-lethal (symbol s1; Lane, 1966).


2019 ◽  
Vol 9 (2) ◽  
pp. 133-141
Author(s):  
Sana Islam ◽  
Irfan Ahmed Shaikh ◽  
Nabeela Firdous ◽  
Azhar Ali ◽  
Yumna Sadef

Abstract The use of fresh water in the textile wash-off process is becoming more expensive day by day due to declining water levels in the region. In this study, the potential of using Fenton oxidation in wash-off cotton reactive dyeing was investigated. The spent wash-off wastewater from one dyeing was first treated with Fenton oxidation, and then reused in several washing-offs employing widely used reactive dyes, C.I. Reactive Yellow 145, C.I. Reactive Blue 21, and C.I. Reactive Red 195. Experimental results showed that at acidic pH (3) using optimized quantities of FeSO4 and H2O2, Fenton process yielded a significant reduction (90–95%) of color in 30 minutes of treatment time. New washing-offs were then carried out in Fenton decolorized wash-off wastewater, and dyed cotton fabric samples were subjected to quality evaluations in terms of color difference properties (ΔL*, Δc*,Δb*, Δa*, ΔE*cmc) and wash fastness properties. This study concluded that after Fenton oxidation, treated liquor can be effectively reused subsequent washing-offs without compromising fabric quality parameters as ΔE*cmc was less than 1, and washing and crocking was also in the range of 4.5–5 which is commercially acceptable. Moreover, the difference in color strength in terms of k/s was also negligible.


2020 ◽  
Vol 223 (1) ◽  
pp. 211-232
Author(s):  
Pierre Romanet ◽  
Dye SK Sato ◽  
Ryosuke Ando

SUMMARY Many recent studies have tried to determine the influence of geometry of faults in earthquake mechanics. However, it still remains largely unknown, and it is explored mainly with numerical models. In this paper, we will try to understand how exactly does the geometry come into play in the mechanics of an earthquake from analytical perspective. We suggest a new interpretation of the effect of geometry on the stress on a fault, where the curvatures of the fault that multiply the slip play a major role. Starting from the representation theorem, which links the displacement in a medium to the slip distribution on its boundary, and assuming a 3-D, homogeneous, infinite medium, a regularized boundary-element equation can be obtained. Using this equation, it is possible to separate the influence of geometry, as expressed by the curvatures and torsions of the field lines of slip on the fault surface, which multiply the slip, from the effect of the gradient of slip. This allows us to shed new light on the mechanical effects of geometrical complexities on the fault surface, with the key parameters being the curvatures and torsions of the slip field lines. We have used this new approach to show that, in 2-D static in-plane problems, the shear traction along the fault is mainly controlled by the gradient of slip along the fault, while the normal traction is mainly controlled by the slip that multiplies the curvature along the fault. Finally, we applied this new approach to re-interpret the effect of roughness (why there is a need for a minimum lengthscale in linear elasticity, how to study mechanically the difference of roughness measurements with the direction of slip, scaling of slip distribution versus geometry), bends and kinks (what is the difference between the two, are they sometimes equivalent), as well as to explain further the false paradox between smooth-and-abrupt-bends. This unified framework allows us to improve greatly our understanding of the effect of fault geometry on the mechanics of earthquakes.


2019 ◽  
Vol 124 ◽  
pp. 01017
Author(s):  
O. S. Sirotkin ◽  
A. M. Pavlova ◽  
R. O. Sirotkin ◽  
A. E. Buntin

Within the unified model of chemical bonding and methods of quantitative assessment of components of mixed chemical interaction between the elements in compounds, developed by the authors, a new approach was developed to assess the structural and energy characteristics of substances and fuels. It comprises establishing a correlation between the difference of bonds’ chemical components of reactants and end products. Changes in the chemical bond components affect such characteristics of chemical reactions as the heat of formation of the reaction products, their redox properties, whether reaction is endoor exothermic, as well as the heat of fuel combustion reactions. This approach is an additional reserve for improving the methods for assessing the energy characteristics of fuels and increasing the efficiency of energy production technologies.


Sign in / Sign up

Export Citation Format

Share Document