Enhanced Heat Transfer in Radial Heat Sinks for LED Lamps

Author(s):  
Fernando Cano-Banda ◽  
Ana Gallardo-Gutierrez ◽  
Jesus Garcia-Gonzalez ◽  
Abel Hernandez-Guerrero ◽  
Luis Luviano-Ortiz

A radial design of a passive heat sink for cooling LED illumination devices is analyzed numerically in order to identify the geometric shape that promotes better heat dissipation rates. Natural convection with the surrounding is considered during the operation of the heat sink. Due to the fact that natural convection is the main mechanism of heat transfer, the shape of the heat sink has a high influence in the heat dissipated. An analysis of the influence of different parameters of a heat sink is conducted in the presented study. The radial heat sink under analysis consists in a flat disc with rectangular fins on it, and the fins are distributed with a radial longitudinal orientation in a circular row arrangement. The number of rows can vary but there is a constant relation of two times the number of fins between the number of fins in an inner row and the next outer row. In order to find a correct configuration to improve the dissipation of heat, parameters like the number of fins, the length of the fins and the separation between fins are studied. The average Nusselt number and thermal resistance for each geometric configuration are compared. The output analysis provides the best shape for a maximum heat transfer.

2019 ◽  
Vol 118 (7) ◽  
pp. 44-49
Author(s):  
Rajshekhar V Unni ◽  
Vijay S Majali

In the paper review of studies of heat sinks under natural convection is taken up. The discussions are mainly on experimental works carried out on rectangular fin arrays, optimization of heat sink dimensions and heat transfer enhancement. The geometries of heat sinks, fin spacing, fin height, fin length, fin thickness and fin material and base to ambient temperature difference are the important parameters on which heat transfer rate depends. So the design and optimization of the heat sink geometries becomes essential. It was found that the optimum fin  spacing is ranging from 6.1- 11.9mm which gives maximum heat dissipation; the base to ambient temperature difference is 20-1500C. During most of the experimental work carried out a good thermal conductivity material which is cost-effective was chosen.


Author(s):  
Mohammad Reza Shaeri ◽  
Bradley Richard ◽  
Richard Bonner

Cooling performances of perforated-finned heat sinks (PFHS) are investigated in the laminar forced convection heat transfer mode, through detailed experiments. Perforations like windows with square cross sections are placed on the lateral surfaces of the fins. Cooling performances are evaluated due to changes in both porosities and perforation sizes. Thermal characteristics are reported based on pumping power, in order to provide more practical insight about performances of PFHSs in real applications. It is found that at a constant perforation size, there is an optimum porosity that results in the largest heat transfer coefficient. For a fixed porosity, increasing the number of perforations (reducing the perforation size) results in an enhancement of heat transfer rate due to repeated interruption of the thermal boundary layer. The opposite trend is observed for PFHSs with larger perforation sizes. This indicates that there is an optimum perforation size and distance between perforations in order to achieve the maximum heat transfer coefficients at a constant porosity. Also, a PFHS results in a smaller temperature non-uniformity across the heat sink base, as well as a more rapid reduction in temperature non-uniformity on the heat sink base by increasing pumping power. In addition, the advantage of a PFHS to reduce the overall weight of the cooling system is incorporated into thermal characteristics of the heat sinks, and demonstrated by the mass specific heat transfer coefficient.


Author(s):  
Mehmet Arik ◽  
Yogen Utturkar ◽  
Murat Ozmusul

In moderate power electronics applications, the most preferred way of thermal management is natural convection to air with or without heat sinks. Though the use of heat sinks is fairly adequate for modest heat dissipation needs, it suffers from some serious performance limitations. Firstly, a large volume of the heat sink is required to keep the junction temperature at an allowable limit. This need arises because of the low convective film coefficients due to close spacing. In the present computational and experimental study, we propose a synthetic jet embedded heat sink to enhance the performance levels beyond two times within the same volume of a regular passive heat sink. Synthetic jets are meso-scale devices producing high velocity periodic jet streams at high velocities. As a result, by carefully positioning of these jets in the thermal real estate, the heat transfer over the surfaces can be dramatically augmented. This increase in the heat transfer rate is able to compensate for the loss of fin area happening due to the embedding of the jet within the heat sink volume, thus causing an overall increase in the heat dissipation. Heat transfer enhancements of 2.2 times over baseline natural convection cooled heat sinks are measured. Thermal resistances are compared for a range of jet operating conditions and found to be less than 0.9 K/W. Local temperatures obtained from experimental and computational agreed within ± 5%.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Shubhankar Chakraborty ◽  
Omprakash Sahu ◽  
Prasanta Kr. Das

The thermal hydraulic performance of a miniature heat sink during flow boiling of distilled water is presented in this article. The unique design of the heat sink contains a number of microchannels of 1 mm × 1 mm cross section arranged in a regular hexagonal array. The design facilitates repeated division and joining of individual streams from different microchannels and thereby can enhance heat transfer. Individual slug bubble experiences a typical route of break up, coalescence, and growth. The randomness of these processes enhances the transport of heat. With the increase of vapor quality the heat transfer coefficient increases, reaches the maximum value, and then drops. The maximum heat transfer coefficient occurs at an exit vapor quality much higher than that observed in conventional parallel microchannel heat sinks. Repeated redistribution of the coolant in the interlinked channels and the restricted growth of the slug bubbles may be responsible for this trend.


Author(s):  
Dileep V. Nair

Abstract This work presents a simple method to improve natural convection heat transfer performance of horizontal-base straight-fin heat sink by adding partial shroud plates on top of the heat sink at both ends. Experiments are conducted in conjunction with a detailed three-dimensional (3D) computational study. The numerical model is validated using experimental results. With partial shrouding, the modification and effective utilization of airflow surrounding the heat sink leads to significant heat transfer enhancement. The installation of shroud plates effectively improves the mass flowrate of air admitted into the fin channel. Further, the airflow drawn above the heat sink dissipates heat from the upper surface of the shroud plate. There is also a significant heat dissipation from the lower surface of the shroud plate which is exposed to cold air drawn from the side-end of the heat sink. The heat transfer from the existing optimal conventional heat sink is improved by 17% with the introduction of shroud plates. An optimal width of the shroud plate is identified to exist for the maximum heat transfer. The percentage enhancement in heat transfer achieved by partial shrouding increases with a decrease in the fin height and with an increase in the fin spacing. The proposed compact heat sink design would be of application in enhancing passive heat dissipation from light-emitting diode (LED) lights and other electronic devices, especially when size constraints exist.


Author(s):  
S. S. Bahga ◽  
A. Bhattacharya ◽  
Roop L. Mahajan

This paper investigates the effects of the presence of unheated and heated shrouds on the thermal performance of longitudinal finned heat sinks. A comprehensive numerical study was conducted to determine the impact of the shroud clearance from the tip of the fins and shroud heating. The first part of the study deals with the effects of an unheated shroud on finned heat sinks of different fin height, fin pitch and length in an attempt to cover a wide range of geometry. The numerical results reveal an optimum clearance for maximum heat transfer. For all heat sinks studied the unheated shroud improved the performance by as much as 15% until the shroud was very close when the performance decreased by as much as 10%. In the second part of the paper, the effects of heating of the shroud were considered. In these numerical runs, an isothermal boundary condition was imposed on the shroud. For the heating levels considered, it was found that heating of the shrouds can increase or lower the thermal performance of the heat sink depending on the heat sink geometry and shroud clearance. Finally, the numerical results also revealed a systematic dependence of the normalized Nusselt number on the Rayleigh number for a given heat sink geometry.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


Author(s):  
Ning Zhang ◽  
Pankaj R. Chandra ◽  
Ryan Robledo ◽  
Sree Harsha Balijepalli

Computers are crucial to nearly every endeavor in the modern world. Some computers, particularly those used in military applications, are required to endure extreme conditions with limited maintenance and few parts. Units such as these will hereafter be referred to as “rugged computers.” This series of experiments aims to produce improvements to rugged computers currently in service. Using heat pipes and finned heat sinks on an enclosed box, a computer’s Central Processing Unit (CPU) is able to reject heat without suffering contamination from unforgiving environments. A modular prototype was designed to allow for three distinct cases; a case with no heat pipes and fins, a cast with heat-pipes mounted internally with exterior fins and a case with heat-pipes extended externally with exterior fins. Each case was tested at three different heat loads, with a copper plate heated by a silicone heat strip simulating the heat load generated by a CPU. Each case/load combination was run many times to check for repeatability. The aim of this research is to discover the ideal case for maximum heat transfer from the CPU to the external environment. In addition to the experiments, numerical simulation of these modular prototypes with different designs of heat pipes were conducted in this research. Creating an accurate model for computer simulations will provide validation for the experiments and will prove useful in testing cases not represented by the modular prototype. The flow and heat transfer simulations were conducted using Autodesk CFD. The aim here is to create a model that accurately reflects the experimentally-verified results from the modular prototype’s cases and loads, thereby providing a base from whence further designs can branch off and be simulated with a fair degree of accuracy.


2011 ◽  
Vol 110-116 ◽  
pp. 1613-1618 ◽  
Author(s):  
S. Kapoor ◽  
P. Bera

A comprehensive numerical study on the natural convection in a hydrodynamically anisotropic as well as isotropic porous enclosure is presented, flow is induced by non uniform sinusoidal heating of the right wall of the enclosure. The principal directions of the permeability tensor has been taken oblique to the gravity vector. The spectral Element method has been adopted to solve numerically the governing differential equations by using the vorticity-stream-function approach. The results are presented in terms of stream function, temperature profile and Nusselt number. The result show that the maximum heat transfer takes place at y = 1.5 when N is odd.. Also, increasing media permeability, by changing K* = 1 to K* = 0.2, increases heat transfer rate at below and above right corner of the enclosure. Furthermore, for the all values of N, profiles of local Nusselt number (Nuy) in isotropic as well as anisotropic media are similar, but for even values of N differ slightly at N = 2.. In particular the present analysis shows that, different periodicity (N) of temperature boundary condition has the significant effect on the flow pattern and consequently on the local heat transfer phenomena.


1980 ◽  
Vol 102 (2) ◽  
pp. 215-220 ◽  
Author(s):  
E. M. Sparrow ◽  
C. Prakash

An analysis has been performed to determine whether, in natural convection, a staggered array of discrete vertical plates yields enhanced heat transfer compared with an array of continuous parallel vertical plates having the same surface area. The heat transfer results were obtained by numerically solving the equations of mass, momentum, and energy for the two types of configurations. It was found that the use of discrete plates gives rise to heat transfer enhancement when the parameter (Dh/H)Ra > ∼2 × 103 (Dh = hydraulic diameter of flow passage, H = overall system height). The extent of the enhancement is increased by use of numerous shorter plates, by larger transverse interplate spacing, and by relatively short system heights. For the parameter ranges investigated, the maximum heat transfer enhancement, relative to the parallel plate case, was a factor of two. The general degree of enhancement compares favorably with that which has been obtained in forced convection systems.


Sign in / Sign up

Export Citation Format

Share Document