scholarly journals Experiments and Simulations on the Turbulent, Rarefaction Wave Driven Rayleigh–Taylor Instability

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
R. V. Morgan ◽  
J. W. Jacobs

Abstract Experiments were performed to observe the growth of the turbulent, Rayleigh–Taylor unstable mixing layer generated between air and SF6, with an Atwood number of A=(ρ2−ρ1)/(ρ2+ρ1)=0.64, where ρ1 and ρ2 are the densities of air and SF6, respectively. A nonconstant acceleration with an average value of 2300g0, where g0 is the acceleration due to gravity, was generated by interaction of the interface between the two gases with a rarefaction wave. Three-dimensional, multimode perturbations were generated on the diffuse interface, with a diffusion layer thickness of δ=3.6 mm, using a membraneless vertical oscillation technique, and 20 experiments were performed to establish a statistical ensemble. The average perturbation from this ensemble was extracted and used as input for a numerical simulation using the Lawrence Livermore National Laboratory (LLNL) Miranda code. Good qualitative agreement between the experiment and simulation was observed, while quantitative agreement was best at early to intermediate times. Several methods were used to extract the turbulent growth constant α from experiments and simulations while accounting for time varying acceleration. Experimental, average bubble and spike asymptotic self-similar growth rate values range from α=0.022 to α=0.032 depending on the method used, and accounting for variable acceleration. Values found from the simulations range from α=0.024 to α=0.041. Values of α measured in the experiments are lower than what are typically measured in the literature but are more in line with those found in recent simulations.

2016 ◽  
Vol 791 ◽  
pp. 34-60 ◽  
Author(s):  
R. V. Morgan ◽  
O. A. Likhachev ◽  
J. W. Jacobs

Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order of $1000g_{0}$, where $g_{0}$ is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duff et al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duff et al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a $1/k^{2}$ decay in growth rates as $k\rightarrow \infty$ for large-wavenumber perturbations.


2018 ◽  
Vol 838 ◽  
pp. 320-355 ◽  
Author(s):  
R. V. Morgan ◽  
W. H. Cabot ◽  
J. A. Greenough ◽  
J. W. Jacobs

Experiments and large eddy simulation (LES) were performed to study the development of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced between two gases accelerated by a rarefaction wave. Single-mode two-dimensional, and single-mode three-dimensional initial perturbations were introduced on the diffuse interface between the two gases prior to acceleration. The rarefaction wave imparts a non-constant acceleration, and a time decreasing Atwood number, $A=(\unicode[STIX]{x1D70C}_{2}-\unicode[STIX]{x1D70C}_{1})/(\unicode[STIX]{x1D70C}_{2}+\unicode[STIX]{x1D70C}_{1})$, where $\unicode[STIX]{x1D70C}_{2}$ and $\unicode[STIX]{x1D70C}_{1}$ are the densities of the heavy and light gas, respectively. Experiments and simulations are presented for initial Atwood numbers of $A=0.49$, $A=0.63$, $A=0.82$ and $A=0.94$. Nominally two-dimensional (2-D) experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed to approach an intermediate-time velocity plateau that is in disagreement with the late-time velocity obtained from the incompressible model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is observed for 2-D bubbles in large wavenumber, $k=2\unicode[STIX]{x03C0}/\unicode[STIX]{x1D706}=0.247~\text{mm}^{-1}$, experiments and simulations, where $\unicode[STIX]{x1D706}$ is the wavelength of the initial perturbation. At moderate Atwood numbers, the bubble and spike velocities approach larger values than those predicted by Goncharov’s model. These late-time velocity trends are predicted well by numerical simulations using the LLNL Miranda code, and by the 2009 model of Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to variable acceleration and density. Large Atwood number experiments show a delayed roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with three-dimensional perturbations tend to agree better with models and a simulation using the LLNL Ares code initiated with an axisymmetric rather than Cartesian symmetry.


Author(s):  
Bertrand Rollin ◽  
Malcolm J. Andrews

We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model [1] for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant variables before fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of mixing between two interpenetrating fluids to define the initial profiles for the turbulence model variables. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted profiles for the turbulence model variables and profiles of the variables obtained from low Atwood number three dimensional simulations show reasonable agreement.


2003 ◽  
Vol 21 (3) ◽  
pp. 369-373 ◽  
Author(s):  
Yu.A. KUCHERENKO ◽  
S.I. BALABIN ◽  
R.I. ARDASHOVA ◽  
O.E. KOZELKOV ◽  
A.V. DULOV ◽  
...  

Experiments conducted on the EKAP facility at the Russian Federal Nuclear Center–VNIITF concerning the stabilization of Rayleigh–Taylor instability-induced mixing in miscible liquids by the formation of a molecular diffusion (or transitional) layer between the liquids initially were described. The experiments had an Atwood number of 1/3. The acceleration was 3500 times that of Earth's gravity, and several values of diffusion layer thickness were considered. The experiments showed that the growth of the turbulent mixing zone could be delayed by adjusting the amplitude of the initial perturbations and the characteristic thickness of the diffusion layer. This has been observed in experiments conducted with water and mercury. The mixing layer evolution was imaged using X-ray radiography.


Author(s):  
Javaid Naziar ◽  
Rich Couch ◽  
Milt Davis

Traditionally, aeropropulsion structural performance and aerodynamic performance have been designed separately and later mated together via flight testing. In today’s atmosphere of declining resources, it is imperative that more productive ways of designing and verifying aeropropulsion performance and structural interaction be made available to the aerospace industry. One method of obtaining a more productive design and evaluation capability is through the use of numerical simulations. Currently, Lawrence Livermore National Laboratory has developed a generalized fluid/structural interaction code known as ALE3D. This code is capable of characterizing fluid and structural interaction for components such as the combustor, fan/stators, inlet and/or nozzles. This code solves the 3D Euler equations and has been applied to several aeropropulsion applications such as a supersonic inlet and a combustor rupture simulation. To characterize aerodynamic-structural interaction for rotating components such as the compressor, appropriate turbomachinery simulations would need to be implemented within the ALE3D structure. The Arnold Engineering Development Center is currently developing a three-dimensional compression system code known as TEACC (Turbine Engine Analysis Compressor Code). TEACC also solves the 3D Euler equations and is intended to simulate dynamic behavior such as inlet distortion, surge or rotating stall. The technology being developed within the TEACC effort provides the necessary turbomachinery simulation for implementation into ALE3D. This paper describes a methodology to combine three-dimensional aerodynamic turbomachinery technology into the existing aerodynamic-structural interaction simulation, ALE3D to obtain the desired aerodynamic and structural integrated simulation for an aeropropulsion system.


2001 ◽  
Vol 447 ◽  
pp. 377-408 ◽  
Author(s):  
Y.-N. YOUNG ◽  
H. TUFO ◽  
A. DUBEY ◽  
R. ROSNER

We investigate the miscible Rayleigh–Taylor (RT) instability in both two and three dimensions using direct numerical simulations, where the working fluid is assumed incompressible under the Boussinesq approximation. We first consider the case of randomly perturbed interfaces. With a variety of diagnostics, we develop a physical picture for the detailed temporal development of the mixed layer: we identify three distinct evolutionary phases in this development, which can be related to detailed variations in the growth of the mixing zone. Our analysis provides an explanation for the observed differences between two- and three-dimensional RT instability; the analysis also leads us to concentrate on the RT models which (i) work equally well for both laminar and turbulent flows, and (ii) do not depend on turbulent scaling within the mixing layer between fluids. These candidate RT models are based on point sources within bubbles (or plumes) and their interaction with each other (or the background flow). With this motivation, we examine the evolution of single plumes, and relate our numerical results (for single plumes) to a simple analytical model for plume evolution.


Author(s):  
Michael B. Zellner ◽  
Melissa S. Love ◽  
Kyle Champley

Abstract The U.S. Combat Capabilities Development Command Army Research Laboratory and Lawrence Livermore National Laboratory are currently developing a Multi-Energy Flash Computed Tomography (MEFCT) diagnostic for multi-frame, in situ, three-dimensional radiographic assessment of ballistic impact phenomena. To accomplish this, we combine the capabilities of medical X-ray computed tomography and high-speed computed tomography, to produce a system that captures three independent, time-sequenced volume reconstructions throughout the timespan of a typical dynamic ballistic event. Because this system has the capability to image an event across three spatial dimensions and time, it is the first of its kind to track mass/material-flux of an un-bounded system through a volume at ballistic timescales. To demonstrate the diagnostic’s capabilities, an assessment of a bullet penetrating an aluminum plate is performed. A compilation of the three volume reconstructions were computed to describe the event. The results were compared to a state-of-the-art simulation of the event using EPIC, a Lagrangian hydrocode with penetration applications. This comparison shows how using a four-dimensional computed tomography system can benefit the validation of physical failure and mass/material-flow models.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 691
Author(s):  
Francisco-José Gallardo-Basile ◽  
Yannick Naunheim ◽  
Franz Roters ◽  
Martin Diehl

Lath martensite is a complex hierarchical compound structure that forms during rapid cooling of carbon steels from the austenitic phase. At the smallest, i.e., ‘single crystal’ scale, individual, elongated domains, form the elemental microstructural building blocks: the name-giving laths. Several laths of nearly identical crystallographic orientation are grouped together to blocks, in which–depending on the exact material characteristics–clearly distinguishable subblocks might be observed. Several blocks with the same habit plane together form a packet of which typically three to four together finally make up the former parent austenitic grain. Here, a fully parametrized approach is presented which converts an austenitic polycrystal representation into martensitic microstructures incorporating all these details. Two-dimensional (2D) and three-dimensional (3D) Representative Volume Elements (RVEs) are generated based on prior austenite microstructure reconstructed from a 2D experimental martensitic microstructure. The RVEs are used for high-resolution crystal plasticity simulations with a fast spectral method-based solver and a phenomenological constitutive description. The comparison of the results obtained from the 2D experimental microstructure and the 2D RVEs reveals a high quantitative agreement. The stress and strain distributions and their characteristics change significantly if 3D microstructures are used. Further simulations are conducted to systematically investigate the influence of microstructural parameters, such as lath aspect ratio, lath volume, subblock thickness, orientation scatter, and prior austenitic grain shape on the global and local mechanical behavior. These microstructural features happen to change the local mechanical behavior, whereas the average stress–strain response is not significantly altered. Correlations between the microstructure and the plastic behavior are established.


Sign in / Sign up

Export Citation Format

Share Document