Regulated, Unregulated, and Particulate Emissions from Biodiesel Blend Fueled Transportation Engine

2020 ◽  
pp. 1-15
Author(s):  
Chetankumar Patel ◽  
Joonsik Hwang ◽  
Choongsik Bae ◽  
Avinash Kumar Agarwal

Abstract Engine experiments were performed for measurement of regulated, unregulated, and particulate emissions using a 2.2L transportation compression ignition engine fueled with blends of diesel and biodiesels derived from Jatropha and waste cooking oils. JB20 (20% v/v Jatropha biodiesel blended with 80% v/v diesel), WCOB20 (20% v/v waste cooking oil biodiesel blended with 80% v/v diesel) and baseline mineral diesel were used as test fuels in this study. Experiments were performed at an engine speed of 2000 rpm at five engine loads (0, 25, 50, 75, and 100% rated load). Regulated emission results exhibited that JB20 and WCOB20 emitted higher HC, and CO at low engine loads compared to baseline diesel, whereas WCOB20 exhibited relatively higher NOX emissions compared to baseline diesel. Unregulated emissions were higher at low engine loads and decreased with increasing engine load. Biodiesel blends showed relatively higher methane and ethylene trace emissions compared to baseline diesel, whereas WCOB20 showed higher formaldehyde, formic acid, iso-pentane, sulfur dioxide, n-octane emissions compared to diesel at no load. Particulate number concentrations were relatively higher from biodiesel blends compared to baseline diesel in most engine operating conditions.

Author(s):  
Jai Gopal Gupta ◽  
Avinash Kumar Agarwal ◽  
Suresh K. Aggarwal

The use of biodiesel substantially reduces particulate matter (PM), hydrocarbon (HC) and carbon monoxide (CO) emissions, slightly reduces power output; increases fuel consumption and marginally increases oxides of nitrogen (NOx) emission in an unmodified common rail direct injection (CRDI) diesel engine. Lower blends of biodiesel demonstrated lower emissions, while easing pressure on scarce petroleum resources, without significantly sacrificing engine power output and fuel economy. However due to adverse health effects of smaller size particulate matter (PM) emitted by internal combustion (IC) engines, most recent emission legislations restrict the PM mass emissions in addition to total particle numbers emitted. It is an overwhelming argument that usage of biodiesel leads to reduction in PM mass emissions. In this paper, experimental results of PM emissions using Karanja biodiesel blends (KB20 and KB40) in a modern CRDI transportation engine (maximum fuel injection pressure of 1600 bar) have been reported. This study also explores comparative effect of varying engine speed and load on PM emissions for biodiesel blends vis-à-vis baseline mineral diesel. Particulate size-number distribution, particle size-surface area distribution and total particulate number concentrations were experimentally determined under varying engine operating conditions and compared with baseline mineral diesel. KB20 showed highest particulate number concentration upto 80% rated engine loads, however at rated load, KB40 emitted highest number of particulates.


Author(s):  
Vinoth E

Biodiesel is receiving increased attention as an alternative, non-toxic, biodegradable and renewable diesel fuel and contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. Exploring new energy resources, such as biofuel is of growing importance in recent years. The possibility of obtaining oil from plant resources has created a great importance in several countries. Vegetable oil after esterification being used as bio diesel, Considering the cost and demand of the edible oil is bearable, so it may be preferred for the preparation of bio diesel in India.  The transesterification of waste cooking oils with methanol as well as the main uses of the fatty acid methyl esters are reviewed. The general aspects of this process and the applicability of different types of catalysts (acids, alkaline metal hydroxides, alkoxides and carbonates, enzymes and non-ionic bases, such as amines, amides, and guanidine and triamino (imino) phosphoranes) are described. Transesterification is carried in a reaction cavity, once the reaction is complete, glycerine and biodiesel are gravity separated.   


Author(s):  
Muzhda Azizi ◽  
Sweeta Akbari

Nowadays, preservation of natural resources on earth is one of the most important concerns of humanity. In this regard, increasing the consumption of energy is one of the most critical challenges that humans are facing. Because, on the one hand, the untapped use of different sources of energy from fossil fuels can destroy this natural resource and, on the other hand, pollution from the use of these resources is a serious threat to the environment. Recent research suggests that affordable, sustainable and environmentally friendly fuels, which can be a good alternative to fossil fuels, have become more important. Therefore, biodiesel has made it possible to release less greenhouse gas emission and low toxicity emissions, which can partly meet fuel requirements and is the best alternative for petroleum diesel. In addition, the waste cooking oils are a major source of biodiesel for their essential compounds, such as glycerol. The use of waste cooking oils can reduce biodiesel production cost by 60 to 90 percent. Therefore, the main objective of this review is to study the production of biodiesel using transesterification reaction of waste cooking oil as an alternative fuel to petroleum diesel that can be used easily in diesel engines.


2019 ◽  
Vol 102 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Alberto Mannu ◽  
Monica Ferro ◽  
Maria Enrica Di Pietro ◽  
Andrea Mele

The consideration towards waste cooking oils is changing from hazardous waste to valuable raw material for industrial application. During the last 5 years, some innovative processes based on the employment of recycled waste cooking oil have appeared in the literature. In this review article, the most recent and innovative applications of recycled waste cooking oil are reported and discussed. These include the production of bioplasticizers, the application of chemicals derived from waste cooking oils as energy vectors and the use of waste cooking oils as a solvent for pollutant agents.


2019 ◽  
Vol 14 (3) ◽  
pp. 417-425 ◽  
Author(s):  
Omojola Awogbemi ◽  
Emmanuel Idoko Onuh ◽  
Freddie L Inambao

Abstract Vegetable oils have been used as a feedstock for fatty acid methyl ester (FAME) production. The high cost of neat vegetable oil and its impact on food security have necessitated its replacement as a feedstock for FAME by used vegetable oil, also known as waste cooking oil (WCO). This study compares the properties and fatty acid (FA) compositions of samples of neat vegetable oil with those of samples of WCO, collected from restaurants and takeaway outlets at the point of disposal. The samples were subjected to property determination and pyrolysis gas chromatography mass spectrometer (PYGCMS) analysis. Analysis showed that degree of usage and the type of food items originally fried in the oil substantially affected its properties and FA composition. Density of neat vegetable oil varied between 904.3 and 919.7 kg/m3 and of WCO between 904.3 and 923.2 kg/m3. The pH of neat vegetable oil varied between 7.38 and 8.63 and of WCO between 5.13 and 6.61. The PYGCMS analysis showed that neat palm oil contains 87.7% unsaturated FA and 12.3% saturated FA, whereas neat sunfoil contains 74.37% saturated FA and 25% polyunsaturated FA. Generally, neat vegetable oils consisted mainly of saturated FAs and polyunsaturated FAs, whereas the WCO contained mainly of saturated FAs and monounsaturated FAs. This research confirms the suitability of WCO as feedstock for FAME.


2019 ◽  
Vol 23 (1) ◽  
pp. 59-68
Author(s):  
Damian Marcinkowski ◽  
Mirosław Czechlowski ◽  
Tomasz Grzelak

AbstractThe second-generation liquid biofuels are fuels derived from non-food raw materials, i.e. waste cooking oils and animal fats. They are waste raw materials from the agri-food industry, hence their quantity is limited, and their quality depends, inter alia, on the place of their acquisition. Considering the fact that rheological properties of liquid biofuels are closely correlated with the quality of raw materials from which they are obtained, the industrial production of biofuels from waste fats requires development of new analytical methods, allowing for a quick assessment of the quality of the obtained products. The aim of the study was to confirm the possibility of using near infrared spectrometry to assess the content of methyl palmitate in biofuels produced from waste cooking oil. The calibration models were based on 41 absorbance spectra recorded in the range of 400-2170 nm for samples containing from 0 to 5 % of methyl palmitate. The obtained results confirmed that there is a possibility of effective detection of the concentration of this ester in biofuel using the spectrum in the range of 1644-1778 nm. The developed PLS calibration models are characterized by a determination co-efficient (R2) exceeding the value of 0.99.


2015 ◽  
Vol 98 (6) ◽  
pp. 1645-1654 ◽  
Author(s):  
Haixiang Zhao ◽  
Yongli Wang ◽  
Xiuli Xu ◽  
Heling Ren ◽  
Li Li ◽  
...  

Abstract A simple and accurate authentication method for the detection of adulterated vegetable oils that contain waste cooking oil (WCO) was developed. This method is based on the determination of cholesterol, β-sitosterol, and campesterol in vegetable oils and WCO by GC/MS without any derivatization. A total of 148 samples involving 12 types of vegetable oil and WCO were analyzed. According to the results, the contents and ratios of cholesterol, β-sitosterol, and campesterol were found to be criteria for detecting vegetable oils adulterated with WCO. This method could accurately detect adulterated vegetable oils containing 5% refined WCO. The developed method has been successfully applied to multilaboratory analysis of 81 oil samples. Seventy-five samples were analyzed correctly, and only six adulterated samples could not be detected. This method could not yet be used for detection of vegetable oils adulterated with WCO that are used for frying non-animal foods. It provides a quick method for detecting adulterated edible vegetable oils containing WCO.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Jai Gopal Gupta ◽  
Avinash Kumar Agarwal ◽  
Suresh K. Aggarwal

Biodiesel has emerged as one of the most promising alternative fuel to mineral diesel in last two decades globally. Lower blends of biodiesel emit fewer pollutants, while easing pressure on scarce petroleum resources, without sacrificing engine power output and fuel economy. However, diesel engines emit significant amount of particulate matter (PM), most of which are nanoparticles. Due to the adverse health impact of PM emitted by compression ignition (CI) engines; most recent emission legislations restrict the total number of particles emitted, in addition to PM mass emissions. Use of biodiesel leads to reduction in PM mass emissions; however, the particle size–numbers distribution has not been investigated thoroughly. In this paper, PM emission characteristics from Karanja biodiesel blends (KB20 and KB40) in a modern common rail direct injection (CRDI) engine used in a sports utility vehicle (SUV) with a maximum fuel injection pressure of 1600 bar have been reported. This study also explored comparative effect of varying engine speeds and loads on particulate size–number distribution, particle size–surface area distribution, and total particulate number concentration from biodiesel blends vis-à-vis baseline mineral diesel. This study showed that particulate number emissions from Karanja biodiesel blends were relatively higher than baseline mineral diesel.


2014 ◽  
Vol 3 (6) ◽  
Author(s):  
Alex Mazubert ◽  
Joelle Aubin ◽  
Sébastien Elgue ◽  
Martine Poux

AbstractThe transformation of waste cooking oils for fatty acid methyl ester production is investigated in two intensified technologies: microstructured Corning


Sign in / Sign up

Export Citation Format

Share Document