Study of Compact Heat Exchangers Operating In Self-Sustained Oscillatory Flows

Author(s):  
Tracy Fullerton ◽  
N. K. Anand

Abstract Computer codes were developed to study the performance of compact heat exchangers (CHEs) operating in self-sustained oscillatory flow (SSOF) regimes. The methods were based on a Control Volume Based Finite Volume (CVFVM) method for geometric discretization and the Explicit first stage, Single diagonal coefficient, Diagonally Implicit, Runge-Kutta (ESDIRK) method for temporal discretization. The developed codes were validated for both steady and unsteady cases. A study of nine geometrically related domains of flat tubes in staggered configurations was performed. Grid independence was established subject to double cyclic conditions – periodically fully developed flow and heat transfer in the stream-wise direction and cyclic or repeating flow and heat transfer in the cross-stream direction. The maximum Reynolds number was established at approximately 2,000 for the cases studied to avoid the turbulent flow regime. Parameters of interest like Nusselt number, friction factor, and pumping power were calculated for steady and SSOF regimes. An approach was proposed to determine critical Reynolds number (Recrit) for the SSOFs such that for Reynolds number below Recrit the flow remains steady and above Recrit the flow exhibits the characteristics of SSOFs before finally transitioning to fully turbulent conditions. The results indicated a sensitivity of performance parameters to transverse spacing but not to longitudinal spacing. The relative magnitudes of errors associated with simulating an SSOF with a steady flow analysis were also documented.

2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 767-775 ◽  
Author(s):  
Djamel Sahel ◽  
Houari Ameur ◽  
Touhami Baki

The baffling technique is well-known for its efficiency in terms of enhancement of heat transfer rates throught channels. However, the baffles insert is accompanied by an increase in the friction factor. This issue remains a great challenge for the designers of heat exchangers. To overcome this issue, we suggest in the present paper a new design of baffles which is here called graded baffle-design. The baffles have an up- or down-graded height along the channel length. This geometry is characterized by two ratios: up-graded baffle ratio and down-graded baffle ratio which are varied from 0-0.08. For a range of Reynolds number varying from 104 to 2 ? 104, the turbulent flow and heat transfer characteristics of a heat exchanger channel are numerically studied by the computer code FLUENT. The obtained results revealed an enhancement in the thermohydraulic performance offered by the new suggested design. For the channel with a down-graded baffle ratio equal to 0.08, the friction factors decreased by 4-8%


2018 ◽  
Vol 225 ◽  
pp. 05019
Author(s):  
A.Y. Adam ◽  
A.N. Oumer ◽  
Azri Alias ◽  
M. Ishak ◽  
R. Mamat ◽  
...  

Flat tubes heat exchangers are commonly used in many industrial applications as a consequence of the distinctive geometrical characteristics of the flat tube compared with round tube. This paper aims to investigate the flow and heat transfer characteristics of laminar cross-flow forced convection in compact fin-and-flat tube heat exchangers. The experiment was performed to explore the influence of the tube inclination angle on the thermal hydraulic performance of the flat tube heat exchanger. Four flat tubes arranged in two aligned rows having the same longitudinal and transverse pitches have been examined in the range of Reynolds number between 1768.27 and 2259.46. A constant heat flux of 4169.63 W/m2 was applied at the inner surface of each flat tube. On the other hand, the numerical simulation is solved by ANSYS FLUENT for a two dimensional model with unstructured mesh and the results are compared against the experimental results. The numerical simulation results indicate that the average Nusselt number increased by 78.24 % for Reynolds number 1768.27. Besides that, for Reynolds number 1964.75 and 2259.46 the Nusselt numbers were increased by 75.89 % and 54.49%, respectively, compared to experimental results. Moreover, the pressure drop is increased 25 % and 83.38 % for both experimental and numerical simulation with respect to three Reynolds number. It was found that, the tube with 30° degree provides the higher heat transfer with Reynolds number 2259.46. This study could assist engineers in decisions regarding the application of compact fin-and-tube heat exchangers in the automotive field.


Author(s):  
Ping Li ◽  
Jianhui Chen ◽  
Huancheng Qu ◽  
Yonghui Xie ◽  
Di Zhang

A code based on the lattice-Boltzmann method was programmed. At various Reynolds numbers, simulations of the Cu/water nanofluid flow structure and heat transfer performance in a two dimensional microchannel with blocks (Re = 10–100) and grooves (Re = 50–200) were conducted, and the factors affecting the flow and heat transfer were explored. The flow and heat transfer of nanofluids with nanoparticle volume concentration of 0.5%, 1.0%, 1.5% and 2.0% were simulated, obtaining the velocity and temperature distributions to compare with the results of base fluid. Flow analysis showed that recirculation zones formed behind the blocks and in the grooves when nanofluids flowed in the microchannel, and the size of recirculation zone increased with the increase of Reynolds number and nanoparticle volume concentration. The core of the recirculation zone in the groove gradually moved to the right wall as Reynolds number increased at the same nanoparticle volume concentration, and the direction of the main flow was getting horizontal. Heat transfer results indicated that the addition of nanoparticles could promote fluid flow and energy transport, so that the thermal boundary layer thickness decreased and the heat transfer was enhanced. The heat transfer enhancement increased with the increase of Reynolds number and nanoparticle volume concentration. It was also shown that the heat transfer enhancement by increasing the Reynolds number was limited. The results could give a fundamental understanding for designing highly efficient heat exchangers.


Author(s):  
Tung X. Vu ◽  
Lokanath Mohanta ◽  
Vijay K. Dhir

In this work, we focus exclusively on heat transfer enhancement techniques for the air-side heat transfer in air-cooled heat exchangers/condensers. An innovative dimpled fin configuration is explored. Experiments, in which both heat transfer and drag are measured, are conducted with flat tubes in three configurations: without fins, with plain fins and with dimpled fins. Reynolds numbers based on the hydraulic diameter of the finned passages are varied between 600 and 7000. Results indicate that fins are more advantageous at lower Reynolds numbers since the increase in drag at higher Reynolds numbers quickly erases any advantage due to an increase in heat transfer rate. As an example, for the plain fins versus a bare tube at a Reynolds number of 600, there is a 7 fold increase in heat transfer with only a 5 fold increase in drag. However, at a Reynolds number of 7000, both heat transfer and drag increase by approximately 6 times, indicating that the increase in drag has caught up with the heat transfer enhancement. Similarly, while dimpled fins do result in higher heat transfer compared with the plain fins, the advantage is also more prominent at lower Reynolds numbers where heat transfer enhancement is higher than the associated increase in pumping power.


1992 ◽  
Vol 114 (2) ◽  
pp. 373-382 ◽  
Author(s):  
D. A. Olson

We have measured heat transfer and pressure drop of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/cm2. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.


Author(s):  
A. K. Saha ◽  
Sumanta Acharya

A comparative numerical study has been carried out to analyze the unsteady three-dimensional flow and heat transfer in a parallel-plate channel heat exchangers with in-line arrays of periodically mounted square cylinders (pins) at various Reynolds number and geometrical configurations. The geometry considered represents the narrow trailing edge region of the blade where pin fins are used to serve both a structural and a heat transfer role. The three-dimensional unsteady Navier-Stokes and energy equations are solved using higher order temporal and spatial discretizations. The simulations have been carried out for a range of Reynolds number based on cylinder width (180–600) and a Prandtl number of 6.99 (corresponding to water). Conjugate heat transfer calculations have been employed to account for the conduction in the solid cylinder and convection in the fluid. The thermal performance factor (TPF) increases significantly when the flow becomes unsteady. The choice of aspect ratio of the cylinders is judged by their relative increase in friction factor and heat transfer at transitional Reynolds number. The TPF is found to increase with the increase in pitch of the cylinders. The increase in channel height enhances the TPF though the heat transfer decreases at higher channel height.


Author(s):  
Ulf Ahrend ◽  
Angelika Hartmann ◽  
Juergen Koehler

For high efficiency compact heat exchangers one needs to gain detailed knowledge of the distribution of the local heat transfer. For a profound assessment of heat enhancing mechanisms like secondary flow structures which are often found at rather small scales it is necessary to perform heat transfer measurements with high spatial resolution. A technique that satisfies this need is the ammonia absorption method (AAM). It is based on the analogy between heat and mass transfer. The here presented paper describes a new calibration approach for the AAM. It is done through the use of a well established heat transfer correlation for the hydrodynamic and thermal entry in parallel plate channels. This calibration approach is applied to heat transfer measurements in compact heat exchangers with inclined flat tubes and plane fins at Redh = 3000. The heat transfer performance is compared to fin-and-tube heat exchangers with round tubes. It is found that the novel devices show consistently higher global Nusselt numbers than comparable round tube heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document