Wake and Performance Predictions of Two- and Three-Bladed Wind Turbines Based on the Actuator Line Model1

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Sebastian Henao Garcia ◽  
Aldo Benavides-Morán ◽  
Omar D. Lopez Mejia

Abstract This paper challenges the standard wind turbine design numerically assessing the wake and aerodynamic performance of two- and three-bladed wind turbine models implementing downwind and upwind rotor configurations, respectively. The simulations are conducted using the actuator line model (ALM) coupled with a three-dimensional Navier Stokes solver implementing the k−ω shear stress transport turbulence model. The sensitivity of the ALM to multiple simulation parameters is analyzed in detail and numerical results are compared against experimental data. These analyses highlight the most suitable Gaussian radius at the rotor to be equal to twice the chord length at 95% of the blade for a tip-speed ratio (TSR) of ten, while the Gaussian radius at the tower and the number of actuator points have a low incidence on the flow field computations overall. The numerical axial velocity profiles show better agreement upstream than downstream the rotor, while the discrepancies are not consistent through all the assessed operating conditions, thus highlighting that the ALM parameters are also dependent on the wind turbine's operating conditions rather than being merely geometric parameters. Particularly, for the upwind three-bladed wind turbine model, the accuracy of the total thrust computations improves as the TSR increases, while the least accurate wake predictions are found for its design TSR. Finally, when comparing both turbine models, an accurate representation of the downwind configuration is observed as well as realistic power extraction estimates. Indeed, the results confirm that rotors with fewer blades are more suitable to operate at high TSRs.

Author(s):  
James Braun ◽  
Guillermo Paniagua ◽  
Francois Falempin

Abstract The harnessing of mechanical power from supersonic flows is constrained by physical limitations and substantial aerodynamic losses. Bladeless axial turbines are a viable alternative to extract power in such harsh conditions without restricting the operating conditions. In this paper, we present a shape optimization of the wavy surface of bladeless turbines to maximize the power extraction, while minimizing convective heat fluxes and pressure losses. First, a baseline geometry was defined and an experimental campaign was carried out on the baseline wavy surface of the bladeless turbine at supersonic conditions in the Purdue Experimental Aerothermal Lab. Pressure, heat flux and skin friction measurements were compared with the Reynolds Averaged Navier Stokes results. Afterwards, the evaluation routine which consisted of the blade generation, grid generation, solving, and post-processing was implemented within an evolutionary optimizer with a multi-objective function to maximize the pressure force and minimize heat flux and pressure loss. Finally, a three-dimensional assessment in terms of power, heat load and pressure drop was performed for the best performing geometry with the commercial solver CFD++ of Metacomp. Turbulence closure was provided with the k-omega-SST turbulence model. The annular chamber of the bladeless turbine consisted of an unstructured mesh of approx. 8–10 million grid points.


Author(s):  
James Braun ◽  
Guillermo Paniagua ◽  
Francois Falempin

Abstract The harnessing of mechanical power from supersonic flows is constrained by physical limitations and substantial aerodynamic losses. Bladeless axial turbines are a viable alternative to extract power in such harsh conditions without restricting the operating conditions. In this paper, we present a shape optimization of the wavy surface of bladeless turbines to maximize the power extraction, while minimizing convective heat fluxes and pressure losses. First, a baseline geometry was defined and an experimental campaign was carried out on the baseline wavy surface of the bladeless turbine at supersonic conditions in the Purdue Experimental Aerothermal Lab. Pressure, heat flux and skin friction measurements were compared with the Reynolds Averaged Navier Stokes results. Afterwards, the evaluation routine which consisted of the blade generation, grid generation, solving, and post-processing was implemented within an evolutionary optimizer with a multi-objective function to maximize the pressure force and minimize heat flux and pressure loss. Finally, a three-dimensional assessment in terms of power, heat load and pressure drop was performed for the best performing geometry with the commercial solver CFD++ of Metacomp. Turbulence closure was provided with the k-omega-SST turbulence model. The annular chamber of the bladeless turbine consisted of an unstructured mesh of approx. 8-10 million grid points.


Author(s):  
Nicoletta Franchina ◽  
Otman Kouaissah ◽  
Giacomo Persico ◽  
Marco Savini

The paper presents the results of a computational study on the aerodynamics and the performance of a small-scale Vertical-Axis Wind Turbine (VAWT) for distributed micro-generation. The complexity of VAWT aerodynamics, which are inherently unsteady and three-dimensional, makes high-fidelity flow models extremely demanding in terms of computational cost, limiting the analysis to mainly 2D or 2.5D Computational Fluid-Dynamics (CFD) approaches. This paper discusses how a proper setting of the computational model opens the way for carrying out fully 3D unsteady CFD simulations of a VAWT. Key aspects of the flow model and of the numerical solution are discussed, in view of limiting the computational cost while maintaining the reliability of the predictions. A set of operating conditions is considered, in terms of tip-speed-ratio (TSR), covering both peak efficiency condition as well as off-design operation. The fidelity of the numerical predictions is assessed via a systematic comparison with the experimental benchmark data available for this turbine, consisting of both performance and wake measurements carried out in the large-scale wind tunnel of the Politecnico di Milano. The analysis of the flow field on the equatorial plane allows highlighting its time-dependent evolution, with the aim of identifying both the periodic flow structures and the onset of dynamic stall. The full three-dimensional character of the computations allows investigating the aerodynamics of the struts and the evolution of the trailing vorticity at the tip of the blades, eventually resulting in periodic large-scale vortices.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Ling Zhou ◽  
Weidong Shi ◽  
Weigang Lu ◽  
Bo Hu ◽  
Suqing Wu

In this paper, the design methodology of a new type of three-dimensional surface return diffuser (3DRD) is presented and described in detail. The main goal was to improve the hydrodynamic performance of the deep-well centrifugal pump (DCP). During this study, a two-stage DCP equipped with two different type diffusers was simulated employing the commercial computational fluid dynamics (CFD) software ANYSY-Fluent to solve the Navier-Stokes equations for three-dimensional steady flow. A sensitivity analysis of the numerical model was performed in order to impose appropriate parameters regarding grid elements number and turbulence model. The flow field and the static pressure distribution in the diffusers obtained by numerical simulation were analyzed, and the diffuser efficiency was defined to quantify the pressure conversion capability. The prototype experimental test results were acquired and compared with the data predicted from the numerical simulation, which showed that the performance of the pump with 3DRD is better than that of the traditional cylindrical return diffuser (CRD) under all operating conditions. The efficiency and single-stage head of the pump with 3DRD have been significantly improved compared with the standard DCP of the same class.


2013 ◽  
Vol 319 ◽  
pp. 599-604
Author(s):  
Makhsuda Juraeva ◽  
Kyung Jin Ryu ◽  
Sang Hyun Jeong ◽  
Dong Joo Song

A computational model of existing Seoul subway tunnelwas analyzed in this research. The computational model was comprised of one natural ventilationshaft, two mechanical ventilationshafts, one mechanical airsupply, a twin-track tunnel, and a train. Understanding the flow pattern of the train-induced airflow in the tunnel was necessary to improve ventilation performance. The research objective wasto improve the air quality in the tunnel by investigating train-induced airflow in the twin-track subway tunnel numerically. The numerical analysis characterized the aerodynamic behavior and performance of the ventilation system by solving three-dimensional turbulent Reynolds-averaged Navier-Stokes equations. ANSYS CFX software was used for the computations. The ventilation and aerodynamic characteristics in the tunnel were investigated by analyzing the mass flowrateat the exits of the ventilation mechanicalshafts. As the train passed the mechanical ventilation shafts, the amount of discharged-air in the ventilationshafts decreased rapidly. The air at the exits of the ventilation shafts was gradually recovered with time, after the train passed the ventilation shafts. The developed mechanical air-supply for discharging dusty air and supplying clean airwas investigated.The computational results showed that the developed mechanical air-supplycould improve the air quality in the tunnel.


Wind Energy ◽  
2011 ◽  
Vol 15 (6) ◽  
pp. 847-863 ◽  
Author(s):  
Angus C.W. Creech ◽  
Wolf-Gerrit Früh ◽  
Peter Clive

Author(s):  
Earl P. N. Duque ◽  
Michael D. Burklund ◽  
Wayne Johnson

A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80-by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.


Author(s):  
Nicholas Anton ◽  
Magnus Genrup ◽  
Carl Fredriksson ◽  
Per-Inge Larsson ◽  
Anders Christiansen-Erlandsson

In the process of evaluating a parallel twin-turbine pulse-turbocharged concept, the results considering the turbine operation clearly pointed towards an axial type of turbine. The radial turbine design first analyzed was seen to suffer from sub-optimum values of flow coefficient, stage loading and blade-speed-ratio. Modifying the radial turbine by both assessing the influence of “trim” and inlet tip diameter all concluded that this type of turbine is limited for the concept. Mainly, the turbine stage was experiencing high values of flow coefficient, requiring a more high flowing type of turbine. Therefore, an axial turbine stage could be feasible as this type of turbine can handle significantly higher flow rates very efficiently. Also, the design spectrum is broader as the shape of the turbine blades is not restricted by a radially fibred geometry as in the radial turbine case. In this paper, a single stage axial turbine design is presented. As most turbocharger concepts for automotive and heavy-duty applications are dominated by radial turbines, the axial turbine is an interesting option to be evaluated for pulse-charged concepts. Values of crank-angle-resolved turbine and flow parameters from engine simulations are used as input to the design and subsequent analysis. The data provides a valuable insight into the fluctuating turbine operating conditions and is a necessity for matching a pulse-turbocharged system. Starting on a 1D-basis, the design process is followed through, resulting in a fully defined 3D-geometry. The 3D-design is evaluated both with respect to FEA and CFD as to confirm high performance and durability. Turbine maps were used as input to the engine simulation in order to assess this design with respect to “on-engine” conditions and to engine performance. The axial design shows clear advantages with regards to turbine parameters, efficiency and tip speed levels compared to a reference radial design. Improvement in turbine efficiency enhanced the engine performance significantly. The study concludes that the proposed single stage axial turbine stage design is viable for a pulse-turbocharged six-cylinder heavy-duty engine. Taking into account both turbine performance and durability aspects, validation in engine simulations, a highly efficient engine with a practical and realizable turbocharger concept resulted.


2003 ◽  
Vol 125 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Ali Merchant

The impact of boundary layer aspiration, or suction, on the aerodynamic design and performance of turbomachinery airfoils is discussed in this paper. Aspiration is studied first in the context of a controlled diffusion cascade, where the effect of discrete aspiration on loading levels and profile loss is computationally investigated. Blade design features which are essential in achieving high loading and minimizing the aspiration requirement are described. Design studies of two aspirated compressor stages and an aspirated turbine exit guide vane using three dimensional Navier-Stokes calculations are presented. The calculations show that high loading can be achieved over most of the blade span with a relatively small amount of aspiration. Three dimensional effects close to the endwalls are shown to degrade the performance to varying degrees depending on the loading level.


Sign in / Sign up

Export Citation Format

Share Document