scholarly journals A Minimum Creep Rate for 2-1/4Cr-1Mo Steel Consistent With the ASME Section III, Division 5 Rules

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Aritra Chakraborty ◽  
Mark C. Messner ◽  
T.-L. Sham

Abstract This technical note describes a minimum creep rate model for 2-1/4Cr-1Mo steel that is consistent with the current creep strain equation embedded in the ASME Boiler & Pressure Vessel Code Section III, Division 5, Subsection HB, Subpart B isochronous stress–strain curves. Minimum creep rate models for all the Section III, Division 5 Class A materials are required for the development of improved high temperature design methods. Of all the Class A materials, only 2-1/4Cr-1Mo does not have a readily identifying minimum creep rate term in the current isochronous stress–strain curve model.

2016 ◽  
Vol 46 (1) ◽  
pp. 53-64
Author(s):  
V. Rizov

Abstract Analysis is carried-out of fracture in the End Notched Flex- ure (ENF) beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the material constants in the Ramberg-Osgood stress-strain equation on the fracture behaviour. The effect of the crack length on the J-integral value is investigated, too. The analytical approach, developed in the present paper, is very useful for parametric analyses, since the simple formulae obtained capture the essentials of the non-linear fracture in the ENF con- figuration.


1959 ◽  
Vol 32 (2) ◽  
pp. 394-408
Author(s):  
W. E. Claxton

Abstract A stress-strain equation is derived for a homogeneous, isotropic material with the assumptions that for any given homogeneous simple tensile strain, the components of the stress tensor are to the first approximation linear, homogeneous functions of the components of the strain tensor and that no volume change occurs during the deformation. Utilizing the dependence of Poisson's ratio upon the extension referred to the initial coordinates, one elastic coefficient, C12, is found to be sufficient to roughly characterize the first stretch stress-strain curve. Although experimentally this elastic coefficient is found to be essentially constant for extensions greater than 250% its value increases rapidly as zero extension is approached. This behavior agrees qualitatively with data by Blanchard and Parkinson as to the distribution of secondary bond strengths, wherein they found a large number of relatively low-energy bonds which would be effective only at small extensions in contributing to modulus reinforcement. Various aspects of stress strain and cure behavior are examined with the derived equation as a basis.


SIMULATION ◽  
2021 ◽  
pp. 003754972110315
Author(s):  
B Girinath ◽  
N Siva Shanmugam

The present study deals with the extended version of our previous research work. In this article, for predicting the entire weld bead geometry and engineering stress–strain curve of the cold metal transfer (CMT) weldment, a MATLAB based application window (second version) is developed with certain modifications. In the first version, for predicting the entire weld bead geometry, apart from weld bead characteristics, x and y coordinates (24 from each) of the extracted points are considered. Finally, in the first version, 53 output values (five for weld bead characteristics and 48 for x and y coordinates) are predicted using both multiple regression analysis (MRA) and adaptive neuro fuzzy inference system (ANFIS) technique to get an idea related to the complete weld bead geometry without performing the actual welding process. The obtained weld bead shapes using both the techniques are compared with the experimentally obtained bead shapes. Based on the results obtained from the first version and the knowledge acquired from literature, the complete shape of weld bead obtained using ANFIS is in good agreement with the experimentally obtained weld bead shape. This motivated us to adopt a hybrid technique known as ANFIS (combined artificial neural network and fuzzy features) alone in this paper for predicting the weld bead shape and engineering stress–strain curve of the welded joint. In the present study, an attempt is made to evaluate the accuracy of the prediction when the number of trials is reduced to half and increasing the number of data points from the macrograph to twice. Complete weld bead geometry and the engineering stress–strain curves were predicted against the input welding parameters (welding current and welding speed), fed by the user in the MATLAB application window. Finally, the entire weld bead geometries were predicted by both the first and the second version are compared and validated with the experimentally obtained weld bead shapes. The similar procedure was followed for predicting the engineering stress–strain curve to compare with experimental outcomes.


2012 ◽  
Vol 27 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Svetlana Borodulina ◽  
Artem Kulachenko ◽  
Mikael Nygårds ◽  
Sylvain Galland

Abstract We have investigated a relation between micromechanical processes and the stress-strain curve of a dry fiber network during tensile loading. By using a detailed particle-level simulation tool we investigate, among other things, the impact of “non-traditional” bonding parameters, such as compliance of bonding regions, work of separation and the actual number of effective bonds. This is probably the first three-dimensional model which is capable of simulating the fracture process of paper accounting for nonlinearities at the fiber level and bond failures. The failure behavior of the network considered in the study could be changed significantly by relatively small changes in bond strength, as compared to the scatter in bonding data found in the literature. We have identified that compliance of the bonding regions has a significant impact on network strength. By comparing networks with weak and strong bonds, we concluded that large local strains are the precursors of bond failures and not the other way around.


1966 ◽  
Vol 1 (4) ◽  
pp. 331-338 ◽  
Author(s):  
T C Hsu

Three different definitions of the yield point have been used in experimental work on the yield locus: proportional limit, proof strain and the ‘yield point’ by backward extrapolation. The theoretical implications of the ‘yield point’ by backward extrapolation are examined in an analysis of the loading and re-loading stress paths. It is shown, in connection with experimental results by Miastkowski and Szczepinski, that the proportional limit found by inspection is in fact a point located by backward extrapolation based on a small section of the stress-strain curve, near the elastic portion of the curve. The effect of different definitions of the yield point on the shape of the yield locus and some considerations for the choice between them are discussed.


Sign in / Sign up

Export Citation Format

Share Document