Modeling Study on Reviving Abandoned Oil Reservoirs by In Situ Combustion Without CO2 Production While Recovering Both Oil and Heat

2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Yun Han ◽  
Kewen Li ◽  
Lin Jia

Abstract A large number of oil wells have been or will be abandoned around the world. Yet, a very large amount of oil and energy is left behind inside the rocks in abandoned reservoirs because of technological and economic limitations. The residual oil saturation is usually more than 40%, and in shale reservoirs it can be more than 90%. There have been many enhanced oil recovery methods developed to tap the residual oil and improve the oil recovery. Interestingly, a concept has been proposed to transfer abandoned oil and gas reservoirs into exceptional enhanced geothermal reservoirs by oxidizing the residual oil with injected air (Li and Zhang, 2008, “Exceptional Enhanced Geothermal Systems From Oil and Gas Reservoirs,” 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA). This methodology was referred to as an exceptional enhanced geothermal system (EEGS). However, zero CO2 production has not been achieved during the process of EEGS. To this end, numerical models of EEGS in abandoned oil reservoirs configured with vertical wells were established in the present study. Numerical simulations in different well configurations were conducted. The effects of well distance, perforation position, and formation permeability on the CO2 production and the reservoir temperature have been investigated. The numerical simulation results showed that when the depth difference between the production and the injection well perforation positions reaches a specific value, the daily CO2 production rate could be kept at almost zero for over 50 years or even permanently while producing oil and thermal energy continuously. This implies that we realized the concept of EEGS with no CO2 successfully using numerical simulation.

2011 ◽  
Author(s):  
Danielle dos Santos ◽  
Marques Marco Antonio Cetale Santos ◽  
Jorge Leonardo Martins

Author(s):  
Perumal Rajkumar ◽  
Venkat Pranesh ◽  
Ramadoss Kesavakumar

AbstractRapid combustion of fossil fuels in huge quantities resulted in the enormous release of CO2 in the atmosphere. Subsequently, leading to the greenhouse gas effect and climate change and contemporarily, quest and usage of fossil fuels has increased dramatically in recent times. The only solution to resolve the problem of CO2 emissions to the atmosphere is geological/subsurface storage of carbon dioxide or carbon capture and storage (CCS). Additionally, CO2 can be employed in the oil and gas fields for enhanced oil recovery operations and this cyclic form of the carbon dioxide injection into reservoirs for recovering oil and gas is known as CO2 Enhanced Oil and Gas Recovery (EOGR). Hence, this paper presents the CO2 retention dominance in tight oil and gas reservoirs in the Western Canadian Sedimentary Basin (WCSB) of the Alberta Province, Canada. Actually, hysteresis modeling was applied in the oil and gas reservoirs of WCSB for sequestering or trapping CO2 and EOR as well. Totally, four cases were taken for the investigation, such as WCSB Alberta tight oil and gas reservoirs with CO2 huff-n-puff and flooding processes. Actually, Canada has complex geology and therefore, implicate that it can serve as a promising candidate that is suitable and safer place for CO2 storage. Furthermore, injection pressure, time, rate (mass), number of cycles, soaking time, fracture half-length, conductivity, porosity, permeability, and initial reservoir pressure were taken as input parameters and cumulative oil production and oil recovery factor are the output parameters, this is mainly for tight oil reservoirs. In the tight gas reservoirs, only the output parameters differ from the oil reservoir, such as cumulative gas production and gas recovery factor. Reservoirs were modelled to operate for 30 years of oil and gas production and the factor year was designated as decision-making unit (DMU). CO2 retention was estimated in all four models and overall the gas retention in four cases showed a near sinusoidal behavior and the variations are sporadic. More than 80% CO2 retention in these tight formations were achieved and the major influencing factors that govern the CO2 storage in these tight reservoirs are injection pressure, time, mass, number of cycles, and soaking time. In general, the subsurface geology of the Canada is very complex consisting with many structural and stratigraphic layers and thus, it offers safe location for CO2 storage through retention mechanism and increasing the efficiency and reliability of oil and gas extraction from these complicated subsurface formations.


2016 ◽  
Vol 68 ◽  
pp. 07003 ◽  
Author(s):  
Liangchuan Li ◽  
Jianyi Huang ◽  
Cheng Luo ◽  
Fanglan Du ◽  
Yi Liu

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7676
Author(s):  
Ilyas Khurshid ◽  
Imran Afgan

The injection performance of carbon dioxide (CO2) for oil recovery depends upon its injection capability and the actual injection rate. The CO2–rock–water interaction could cause severe formation damage by plugging the reservoir pores and reducing the permeability of the reservoir. In this study, a simulator was developed to model the reactivity of injected CO2 at various reservoir depths, under different temperature and pressure conditions. Through the estimation of location and magnitude of the chemical reactions, the simulator is able to predict the effects of change in the reservoir porosity, permeability (due to the formation/dissolution) and transport/deposition of dissoluted particles. The paper also presents the effect of asphaltene on the shift of relative permeability curve and the related oil recovery. Finally, the effect of CO2 injection rate is analyzed to demonstrate the effect of CO2 miscibility on oil recovery from a reservoir. The developed model is validated against the experimental data. The predicted results show that the reservoir temperature, its depth, concentration of asphaltene and rock properties have a significant effect on formation/dissolution and precipitation during CO2 injection. Results showed that deep oil and gas reservoirs are good candidates for CO2 sequestration compared to shallow reservoirs, due to increased temperatures that reduce the dissolution rate and lower the solid precipitation. However, asphaltene deposition reduced the oil recovery by 10%. Moreover, the sensitivity analysis of CO2 injection rates was performed to identify the effect of CO2 injection rate on reduced permeability in deep and high-temperature formations. It was found that increased CO2 injection rates and pressures enable us to reach miscibility pressure. Once this pressure is reached, there are less benefits of injecting CO2 at a higher rate for better pressure maintenance and no further diminution of residual oil.


SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1537-1553
Author(s):  
Fen Yang ◽  
Larry K. Britt ◽  
Shari Dunn-Norman

Summary Since the late 1980s when Maersk published their work on multiple fracturing of horizontal wells in the Dan field, the use of transverse multiple-fractured horizontal wells has become the completion of choice and the “industry standard” for unconventional and tight-oil and tight-gas reservoirs. Today, approximately 60% of all wells drilled in the United States are drilled horizontally, and nearly all are multiple-fractured. However, little work has been performed to address and understand the relationship between the principal stresses and the lateral direction. This paper has as its goal to fundamentally address the questions: In which direction should I drill my lateral? Do I drill it in the direction of the maximum horizontal stress (longitudinal), or do I drill it in the direction of the minimum horizontal stress (transverse)? This work focuses on how the horizontal well's lateral direction (longitudinal or transverse fracture orientation) influences productivity, reserves, and economics of horizontal wells. Optimization studies, with a single-phase fully 3D numerical simulator including convergent non-Darcy flow, were used to highlight the importance of lateral direction as a function of reservoir permeability. The simulations, conducted for both oil and gas formations over a wide range of reservoir permeability (50 nd–5 md), compare and contrast the performance of transversely multiple-fractured horizontal wells with longitudinally fractured horizontal wells in terms of rate, recovery, and economics. This work also includes a series of field case studies to illustrate actual field comparisons of longitudinal vs. transverse horizontal well performance in both oil and gas reservoirs, and to tie these field examples to the numerical-simulation study. Further, the effects of lateral length, fracture half-length, and fracture conductivity were investigated to see how these parameters affect the decision of lateral direction in both oil and gas reservoirs. In addition, this study seeks to address how completion style (openhole or cased-hole completion) affects the selection of lateral direction. The results show the existence of a critical reservoir permeability, above which longitudinal fractured horizontal wells outperform transverse fractured horizontal wells. With openhole completions, the critical permeability is 0.04 md for gas reservoirs and 0.4 md for oil reservoirs. With cased-hole completions, longitudinal horizontal wells are preferred at a reservoir permeability above 1.5 md in gas reservoirs, and transverse horizontal wells are preferable over the entire permeability range of this study (50 nd–5 md) in oil reservoirs. These are new findings. Previous work generally suggested that longitudinal horizontal wells are a better option for gas reservoirs with permeability over 0.5 md, and for oil reservoirs with permeability over 10 md. This work extends prior study to include unconventional reservoir permeabilities. It provides critical permeability values for both gas and oil reservoirs, which are validated by the good compliance between actual field-case history and simulation results. This work also demonstrates a larger impact of completion method over fracture design. These findings could guide field operations and serve as a reference for similar studies.


Sign in / Sign up

Export Citation Format

Share Document