scholarly journals Reconstructing Compressor Non-uniform Circumferential Flow Field from Spatially Undersampled Data - Part 2: Practical Application for Experiments

2021 ◽  
pp. 1-12
Author(s):  
Fangyuan Lou ◽  
Nicholas J. Kormanik III ◽  
Douglas Matthews ◽  
Nicole L. Key

Abstract In the previous part of the paper, a novel method to reconstruct the compressor non-uniform circumferential flow field using spatially under-sampled data points is developed. In this part of the paper, the method is applied to two compressor research articles to further demonstrate the potential of the novel method in resolving the important flow features associated with these circumferential non-uniformities. In the first experiment, the static pressure field at the leading edge of a vaned diffuser in a high-speed centrifugal compressor is reconstructed using pressure readings from nine static pressure taps placed on the hub of the diffuser. The magnitude and phase information for the first three dominant wavelets are characterized. Additionally, the method shows significant advantages over the traditional averaging methods for calculating repeatable mean values of the static pressure. While using the multi-wavelet approximation method, the errors in the mean static pressure with one dropout measurement are 70% less than the pitchwise-averaging method. In the second experiment, the full-annulus total pressure field downstream of Rotor 2 in a three-stage axial compressor is reconstructed from a small segment of data representing 20% coverage of the annulus. Results show very good agreement between the reconstructed total pressure profile and the experiment at a variety of spanwise locations from near hub to near shroud. The features associated with blade-row interactions accounting for passage-to-passage variations are resolved in the reconstructed total pressure profile.

Author(s):  
Fangyuan Lou ◽  
Douglas R. Matthews ◽  
Nicholas J. Kormanik ◽  
Nicole L. Key

Abstract In the previous part of the paper, a novel method to reconstruct the compressor non-uniform circumferential flow field using spatially under-sampled data points is developed. In this part of the paper, the method is applied to two compressor research articles to further demonstrate the potential of the novel method in resolving the important flow features associated with these circumferential non-uniformities. In the first experiment, the static pressure field at the leading edge of a vaned diffuser in a high-speed centrifugal compressor is reconstructed using pressure readings from nine static pressure taps placed on the hub of the diffuser. The magnitude and phase information for the first three dominant wavelets are characterized. Additionally, the method shows significant advantages over the traditional averaging methods for calculating repeatable mean values of the static pressure. While using the multi-wavelet approximation method, the errors in the mean static pressure with one dropout measurement are 70% less than the pitchwise-averaging method. In the second experiment, the full-annulus total pressure field downstream of Stator 2 in a three-stage axial compressor is reconstructed from a small segment of data representing 20% coverage of the annulus. Results show very good agreement between the reconstructed total pressure profile and the experiment at a variety of spanwise locations from near hub to near shroud. The features associated with blade-row interactions accounting for passage-to-passage variations are resolved in the reconstructed total pressure profile.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Fangyuan Lou ◽  
John Charles Fabian ◽  
Nicole Leanne Key

This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc) from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.


2021 ◽  
pp. 1-12
Author(s):  
Fangyuan Lou ◽  
Nicole L. Key

Abstract The flow field in a compressor is circumferentially non-uniform due to the wakes from upstream stators, the potential field from both upstream and downstream stators, and blade row interactions. This non-uniform flow impacts stage performance as well as blade forced vibrations. Historically, experimental characterization of the circumferential flow variation is achieved by circumferentially traversing either a probe or the stator rows. This involves the design of complex traverse mechanisms and can be costly. To address this challenge, a novel method is proposed to reconstruct compressor nonuniform circumferential flow field using spatially under-sampled data points from a few probes at fixed circumferential locations. The paper is organized into two parts. In the present part of the paper, details of the multi-wavelet approximation for the reconstruction of circumferential flow and use of the Particle Swarm Optimization algorithm for selection of probe positions are presented. Validation of the method is performed using the total pressure field in a multi-stage compressor representative of small core compressors in aero engines. The circumferential total pressure field is reconstructed from 8 spatially distributed data points using a triple-wavelet approximation method. Results show good agreement between the reconstructed and the true total pressure fields. Also, a sensitivity analysis of the method is conducted to investigate the influence of probe spacing on the errors in the reconstructed signal.


2021 ◽  
Author(s):  
Fangyuan Lou ◽  
Douglas R. Matthews ◽  
Nicholas J. Kormanik ◽  
Nicole L. Key

Abstract The flow field in a compressor is circumferentially non-uniform due to geometric imperfections, inlet flow nonuniformities, and blade row interactions. Therefore, the flow field, as represented by measurements from discrete stationary instrumentation, can be skewed and contribute to uncertainties in both calculated one-dimensional performance parameters and aerodynamic forcing functions needed for aeromechanics analyses. Considering this challenge, this paper documents a continued effort to account for compressor circumferential flow nonuniformities based on discrete, under-sampled measurements. First, the total pressure field downstream of the first two stators in a three-stage axial compressor was measured across half of the annulus. The circumferential nonuniformities in the stator exit flow, including vane wake variability, were characterized. In addition, the influence of wake variation on stage performance calculations and aerodynamic forcing functions were investigated. In the present study for the compressor with an approximate pressure ratio of 1.3 at design point, the circumferential nonuniformity in total pressure yields an approximate 2.4-point variation in isentropic efficiency and 54% variation in spectral magnitudes of the fundamental forcing frequency for the embedded stage. Furthermore, the stator exit circumferential flow nonuniformity is accounted for by reconstructing the full-annulus flow using a novel multi-wavelet approximation method. Strong agreement was achieved between experiment and the reconstructed total pressure field from a small segment of measurements representing 20% coverage of the annulus. Analysis shows the wake-wake interactions from the upstream vane rows dominate the circumferentially nonuniform distributions in the total pressure field downstream of stators. The features associated with wake-wake interactions accounting for passage-to-passage variations are resolved in the reconstructed total pressure profile, yielding representative mean flow properties and aerodynamic forcing functions.


2014 ◽  
Vol 599-601 ◽  
pp. 377-380
Author(s):  
Qiao Li ◽  
Ya Yu Huang

The numerical simulation calculation of air-assisted atomizer internal gas flow field is done, the distribution and changes of the nozzle inside flow field total pressure, velocity, and dynamic and static pressure are analyzed. The analysis shows that the total pressure loss is less; due to the effect of gas viscous, the high-speed air flow is formed vortex flow near the outlet nozzle and the mutual influence between the dynamic and static pressure. A new way is supported for optimizing the nozzle structure according to these studies.


Author(s):  
Fangyuan Lou ◽  
Nicole L. Key

Abstract The flow field in a compressor is circumferentially non-uniform due to the wakes from upstream stators, the potential field from both upstream and downstream stators, and blade row interactions. This non-uniform flow impacts stage performance as well as blade forced vibrations. Historically, experimental characterization of the circumferential flow variation is achieved by circumferentially traversing either a probe or the stator rows. This involves the design of complex traverse mechanisms and can be costly. To address this challenge, a novel method is proposed to reconstruct compressor nonuniform circumferential flow field using spatially under-sampled data points from a few probes at fixed circumferential locations. The paper is organized into two parts. In the present part of the paper, details of the multi-wavelet approximation for the reconstruction of circumferential flow and use of the Particle Swarm Optimization algorithm for selection of probe positions are presented. Validation of the method is performed using the total pressure field in a multi-stage compressor representative of small core compressors in aero engines. The circumferential total pressure field is reconstructed from 8 spatially distributed data points using a triple-wavelet approximation method. Results show good agreement between the reconstructed and the true total pressure fields. Also, a sensitivity analysis of the method is conducted to investigate the influence of probe spacing on the errors in the reconstructed signal.


2021 ◽  
Author(s):  
Ryosuke Seki ◽  
Satoshi Yamashita ◽  
Ryosuke Mito

Abstract The aerodynamic effects of a probe for stage performance evaluation in a high-speed axial compressor are investigated. Regarding the probe measurement accuracy and its aerodynamic effects, the upstream/downstream effects on the probe and probe insertion effects are studied by using an unsteady computational fluid dynamics (CFD) analysis and by verifying in two types of multistage high-speed axial compressor measurements. The probe traverse measurements were conducted at the stator inlet and outlet in each case to evaluate blade row performance quantitatively and its flow field. In the past study, the simple approximation method was carried out which considered only the interference of the probe effect based on the reduction of the mass flow by the probe blockage for the compressor performance, but it did not agree well with the measured results. In order to correctly and quantitatively grasp the mechanism of the flow field when the probe is inserted, the unsteady calculation including the probe geometry was carried out in the present study. Unsteady calculation was performed with a probe inserted completely between the rotor and stator of a 4-stage axial compressor. Since the probe blockage and potential flow field, which mean the pressure change region induced by the probe, change the operating point of the upstream rotor and increase the work of the rotor. Compared the measurement result with probe to a kiel probe setting in the stator leading edge, the total pressure was increased about 2,000Pa at the probe tip. In addition, the developed wake by the probe interferes with the downstream stator row and locally changes the static pressure at the stator exit. To evaluate the probe insertion effect, unsteady calculations with probe at three different immersion heights at the stator downstream in an 8-stage axial compressor are performed. The static pressure value of the probe tip was increased about 3,000Pa in the hub region compared to tip region, this increase corresponds to the measurement trend. On the other hand, the measured wall static pressure showed that there is no drastic change in the radial direction. In addition, when the probe is inserted from the tip to hub region in the measurement, the blockage induced by the probe was increased. As a result, operating point of the stator was locally changed, and the rise of static pressure of the stator increased when the stator incidence changed. These typical results show that unsteady simulations including probe geometry can accurately evaluate the aerodynamic effects of probes in the high-speed axial compressor. Therefore, since the probe will pinpointed and strong affects the practically local flow field in all rotor upstream passage and stator downstream, as for the probe measurement, it is important to pay attention to design the probe diameter, the distance from the blade row, and its relative position to the downstream stator. From the above investigations, a newly simple approximation method which includes the effect of the pressure change evaluation by the probe is proposed, and it is verified in the 4-stage compressor case as an example. In this method, the effects of the distance between the rotor trailing edge (T.E.) and the probe are considered by the theory of the incompressible two-dimensional potential flow. The probe blockage decreases the mass flow rate and changes the operating point of the compressor. The verification results conducted in real compressor indicate that the correct blockage approximation enables designer to estimate aerodynamic effects of the probe correctly.


2016 ◽  
Vol 11 (1) ◽  
pp. 23-33
Author(s):  
Maxim Golubev ◽  
Andrey Shmakov

The work presents the results of application of panoramic interferential technique which is based on elastic layers (sensors) usage to obtain pressure distribution on the flat plate having sharp leading edge. Experiments were done in supersonic wind tunnel at Mach number M = 4. Sensitivity and response time are shown to be enough to register pressure pulsation against standing and traveling sensor surface waves. Applying high-frequency image acquiring is demonstrated to make possible to distinguish at visualization images high-speed disturbances propagating in the boundary layer from low-speed surface waves


Author(s):  
G. A. Zess ◽  
K. A. Thole

With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flow field measurements were performed in a large-scale, linear, vane cascade. The flow field measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flowfield results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.


Author(s):  
Wenrui Bao ◽  
Ce Yang ◽  
Li Fu ◽  
Changmao Yang ◽  
Lucheng Ji

Abstract An asymmetric structure of volute in a supercritical carbon dioxide centrifugal compressor induces a non-uniform circumferential distribution of the upstream flow field, which inevitably affects the formation of a two-phase region of carbon dioxide in an impeller. In this work, unsteady simulations for centrifugal compressors were conducted. First, the influence of low static strip induced by low static pressure near volute tongue on the impeller flow field was presented. Then, the non-uniform flow field distribution in the impeller passages and flow characteristics of the passages at the impeller inlet were obtained. Finally, the two-phase regions in the impeller were presented. The results demonstrate that for a centrifugal compressor with volute, the two-phase region appears not only on the suction surface of the leading edge of the blade, but also in some impeller passages, on the pressure surface of the blade near the leading edge, and in the leading edge and mid-chord of tip clearance, under the design conditions. The low static pressure strip induced by the volute leads to a high-speed region in the impeller passages where the temperature and pressure of supercritical carbon dioxide fall below the critical point and carbon dioxide enters the two-phase region. Meanwhile, the static pressure on the blade surface is distorted under the influence of a high-speed region in the passages, resulting in the formation of a two-phase region at the tip clearance. The flow distortion of passages at the impeller inlet results in the appearance of two-phase regions on the both sides of leading edge of the blade. The dryness on the suction side of the blade leading edge and the leading edge of the tip clearance is lower, which indicated that the proportion of liquid-phase carbon dioxide is higher in these two-phase regions.


Sign in / Sign up

Export Citation Format

Share Document