Accurate Boundary Layer Measurements using Hot-Wire Anemometry - Improvements and Error Analysis

2021 ◽  
pp. 1-15
Author(s):  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract In this paper two approaches are presented dealing with common challenges of 2D boundary layer measurements with hot-wire anemometry under challenging test conditions. Novel procedures for accurate determination of the sensor position and correction of the wall heat effect were developed and tested at high free stream velocities of about M1 = 0.3 and thin boundary layers (δ99 = 0.7 - 3.5 mm) of different transitional state in a low density environment. First of all, a novel procedure for automatized determination of the accurate hot-wire sensor position relative to the wall is presented. The quantification and correction of possible sub-miniature sensor misalignments is achieved by taking advantage of the linear nature of the laminar sub-layer of each boundary layer. The statistical approaches for identification and verification of the linear sub-layer demonstrate satisfying results of minimized position uncertainties of about 24 μm. Secondly, a highly adaptable method for correction of the well-known wall heat effect is presented. In contrary to a series of static correction approaches, the biased velocity information is corrected by optimizing the parameters of an exponential approach, where the correction term is optimized for each boundary layer individually. This novel approach resolves the problem of limited applicability of static correction methods, caused by system inherent measurement uncertainties.

2020 ◽  
Vol 10 (24) ◽  
pp. 9058
Author(s):  
Hidemi Takahashi ◽  
Mitsuru Kurita ◽  
Hidetoshi Iijima ◽  
Seigo Koga

This study proposes a unique approach to convert a voltage signal obtained from a hot-wire anemometry to flow velocity data by making a slight modification to existing temperature-correction methods. The approach was a simplified calibration method for the constant-temperature mode of hot-wire anemometry without knowing exact wire temperature. The necessary data are the freestream temperature and a set of known velocity data which gives reference velocities in addition to the hot-wire signal. The proposed method was applied to various boundary layer velocity profiles with large temperature variations while the wire temperature was unknown. The target flow velocity was ranged between 20 and 80 m/s. By using a best-fit approach between the velocities in the boundary layer obtained by hot-wire anemometry and by the pitot-tube measurement, which provides reference data, the unknown wire temperature was sought. Results showed that the proposed simplified calibration approach was applicable to a velocity range between 20 and 80 m/s and with temperature variations up to 15 °C with an uncertainty level of 2.6% at most for the current datasets.


2019 ◽  
Vol 23 (3) ◽  
pp. 578-583
Author(s):  
YC He ◽  
JCK Cheung ◽  
QS Li ◽  
JY Fu

The reference wind speed and reference static pressure are two key parameters for determining the testing results of wind tunnel experiments. Traditionally, the values of these parameters can be determined using direct measurement methods. However, such methods may suffer from less accuracy and inconvenience of operations. This article documents an indirect measurement method which, compared to the traditional methods, has the merits of higher accuracy and greater operational convenience. Examples are presented to demonstrate the main procedures of the method and typical findings by using the method in a boundary layer wind tunnel.


2019 ◽  
Vol 213 ◽  
pp. 02077
Author(s):  
Vladislav Skála ◽  
Václav Uruba ◽  
Pavel Antoš ◽  
Pavel Jonáš

Bypass boundary layer transition in flows on flat plate by adverse pressure gradient was investigated experimentally. It was measuered cases with combination of adverse pressure gradient by different free stream turbulence intenzity. Hot wire anemometry technique was used. Measuerement were made on flat plate in closed wind tunnel. Adverse pressure gradient was set by diffuser in tested section of wind tunnel. Grid turbulence of free stream was controlled by screen. Hot wire anemometry technique was used, intermitency factor was evaluated. Results were compared wih cases with simpliest conditions.


Author(s):  
Nimish Pujara ◽  
Claudio Meza-Valle ◽  
Philip L.-F. Liu

In the nearshore environment, viscous effects of wave- induced boundary layer flows above sea beds are important in evaluating sediment fluxes and wave damping. These effects need to be included in phase- resolved nearshore models for accurate determination of quantities such as the bed shear stress and the decrease in wave height due to frictional dissipation. In this work, we analyze the boundary layers induced by a solitary wave on permeable sea beds (extending previous work of wave-induced boundary layers on an impermeable bed). We find that the velocity profiles and bed shear stress are sensitive to the hydraulic conductivity of the bed, but not extremely sensitive to the precise boundary condition at the bed-fluid interface.


Sign in / Sign up

Export Citation Format

Share Document