Impact of Mistuned Underplatform Dampers On the Nonlinear Vibration of Bladed Disks

Author(s):  
Samuel Quaegebeur ◽  
Benjamin Chouvion ◽  
Fabrice Thouverez

Abstract Before the final experimental validation and certification of a turboengine, designers perform a numerical simulation of its vibratory properties, among other things, in order to estimate its lifespan and adjust the design in an optimization process. One possible practical solution to decrease the vibratory response is to add underplatform dampers to the system. These components dissipate energy by friction and are widely employed in turbomachinery. However, a specific underplatform damper is usually efficient only for a specific mode. The purpose of this work is to investigate the possibility of adding different kinds of underplatform dampers to the cyclic structure in order to decrease the vibratory energy over a larger panel of modes. Different methods exist to determine the vibrations of nonlinear cyclic symmetric systems, but creating a robust methodology to account for the additional effect of mistuning remains a big challenge in the community. In this paper, the structure is mistuned through the friction coefficient of the dampers and not by altering its geometry, as is usually done in the literature. First, assuming a cyclic symmetric structure, the performance of the dampers is assessed for specific modes. Then, employing a method recently developed, the efficiency of an intentional mistuning pattern of underplatform dampers is studied and an optimal pattern proposed.

2021 ◽  
Author(s):  
Samuel Quaegebeur ◽  
Benjamin Chouvion ◽  
Fabrice Thouverez

Abstract Before the final experimental validation and certification of a turboengine, designers perform a numerical simulation of its vibratory properties, among other things, in order to estimate its lifespan and adjust the design in an optimization process. One possible practical solution to decrease the vibratory response is to add underplatform dampers to the system. These components dissipate energy by friction and are widely employed in turbomachinery. However, a specific underplatform damper is usually efficient only for a specific mode. The purpose of this work is to investigate the possibility of adding different kinds of underplatform dampers to the cyclic structure in order to decrease the vibratory energy over a larger panel of modes. Different methods exist to determine the vibrations of nonlinear cyclic symmetric systems, but creating a robust methodology to account for the additional effect of mistuning remains a big challenge in the community. In this paper, the structure is mistuned through the friction coefficient of the dampers and not by altering its geometry, as is usually done in the literature. First, assuming a cyclic symmetric structure, the performance of the dampers is assessed for specific modes. Then, employing a method recently developed, the efficiency of an intentional mistuning pattern of underplatform dampers is studied and an optimal pattern proposed.


2021 ◽  
Vol 19 (1) ◽  
pp. 079
Author(s):  
Andrey I. Dmitriev

In the paper a model of a local contact of a polymer-based nanocomposite was developed within the method of a movable cellular automaton. The features of mechanical behavior of nanocomposite at the mesoscale level under dry sliding were studied with explicit account for the microprofile of the counterbody surface and the characteristic sizes of nanofiller. Factors that contribute to the conditions for the formation of a stable tribofilm of silica nanoparticles are analyzed. Two other parameters like sample geometry and the value of relative sliding velocity are also examined. It is shown that the thickness of tribofilm depends on stress conditions at the contact, and the friction coefficient decreases with increasing sliding velocity similar to one observed experimentally. To ensure the low friction properties of polymer nanocomposite, particles whose sizes are comparable with the characteristic size of the substrate microprofile are preferred. Results of numerical simulation are in good correlation with available experimental data.


2015 ◽  
Vol 57 (7-8) ◽  
pp. 628-634
Author(s):  
Jing Chen ◽  
Liying Wang ◽  
Zhendong Shi ◽  
Zhen Dai ◽  
Meiqing Guo

Author(s):  
Anthony Tacher ◽  
Fabrice Thouverez ◽  
Jason Armand

Abstract An investigation of the interaction between Coriolis forces and mistuning on a cyclic symmetric structure is presented in this paper. The sensitivity of the eigenvalues and eigenvectors to mistuning is first studied with the perturbation method. A lumped parameter model is used to perform a modal analysis using a numerical approach after which geometrical nonlinearity is added to compare behavior with the linear case. Two different modes are thoroughly investigated for different rotational speeds, the first with an eigenvalue isolated from the others and the second presenting a frequency veering zone. The evolution from a standing wave domination at low speeds to a travelling wave domination at high speeds is observed for the isolated mode, whereas a standing wave domination remains around the veering zone for the second mode studied. It is also shown that the geometrical nonlinearity reinforces the mistuning effect versus the Coriolis forces.


2021 ◽  
Vol 36 (1) ◽  
pp. 111-119
Author(s):  
Behzad Jafari Mohammadabadi ◽  
Kourosh Shahriar ◽  
Hossein Jalalifar ◽  
Kaveh Ahangari

Rocks are formed from particles and the interaction between those particles controls the behaviour of a rock’s mechanical properties. Since it is very important to conduct extensive studies about the relationship between the micro-parameters and macro-parameters of rock, this paper investigates the effects of some micro-parameters on strength properties and the behaviour of cracks in rock. This is carried out by using numerical simulation of an extensive series of Uniaxial Compressive Strength (UCS) and Brazilian Tensile Strength (BTS) tests. The micro-parameters included the particles’ contact modulus, the contact stiff ness ratio, bond cohesion, bond tensile strength, the friction coefficient and the friction angle, and the mechanical properties of chromite rock have been considered as base values of the investigation. Based on the obtained results, it was found that the most important micro-parameters on the behaviour of rock in the compressive state are bond cohesion, bond tensile strength, and the friction coefficient. Also, the bond tensile strength showed the largest effect under tensile conditions. The micro-parameter of bond tensile strength increased the rock tensile strength (up to 5 times), minimized destructive cracks and increased the corresponding strain (almost 2.5 times) during critical stress.


2007 ◽  
Vol 555 ◽  
pp. 107-112 ◽  
Author(s):  
D. Arsenović ◽  
S.B. Vrhovac ◽  
Z.M. Jakšić ◽  
Lj. Budinski-Petković ◽  
A. Belić

We study by numerical simulation the compaction dynamics of frictional hard disks in two dimensions, subjected to vertical shaking. Shaking is modeled by a series of vertical expansions of the disk packing, followed by dynamical recompression of the assembly under the action of gravity. The second phase of the shake cycle is based on an efficient event−driven molecular−dynamics algorithm. We analyze the compaction dynamics for various values of friction coefficient and coefficient of normal restitution. We find that the time evolution of the density is described by ρ(t)=ρ∞ − ρEα[−(t/τ)α], where Eα denotes the Mittag−Leffler function of order 0<α<1. The parameter τ is found to decay with tapping intensity Γ according to a power law τ ∝ Γ−γ , where parameter γ is almost independent of the material properties of grains. Also, an expression for the grain mobility during compaction process has been obtained.


Sign in / Sign up

Export Citation Format

Share Document