Influence of Flow Coefficient On Ingress Through Turbine Rim Seals

Author(s):  
Dimitrios Graikos ◽  
Mauro Carnevale ◽  
Carl Sangan ◽  
Gary Lock ◽  
James Scobie

Abstract Rim seals are critical in terms of limiting the temperature of highly-stressed engine components but function with a penalty to the power output and contribute to entropy gain stemming from mixing losses in the turbine. Ingress through rim seals is influenced by the presence of rotor blades and stator vanes, and the mainstream flow coefficient in the annulus that determines the corresponding swirl. This paper presents an experimental study of ingress upstream and downstream of the rotor disc in a 1.5-stage rig with double radial clearance rim seals. Two rotor discs were used, one with blades and one without, and two platforms were used downstream of the rotor, one with vanes and one without. Tests were conducted at two rotational speeds and a range of flow conditions was achieved by varying the annulus and sealing mass flow rates. Concentration effectiveness, swirl and steady pressure measurements separated, for the first time, the influence of the blades and vanes on ingress over a wide range of flow conditions. Measurements on the downstream stator platform provide added insight into the complex interaction between the egress and the mainstream. Measurements of unsteady pressure revealed the presence of large-scale structures, even in the absence of blades. The number and speed of the structures was shown to depend on the flow coefficient and the purge flow rate.

2021 ◽  
Author(s):  
Dimitrios Graikos ◽  
Mauro Carnevale ◽  
Carl M. Sangan ◽  
Gary D. Lock ◽  
James A. Scobie

Abstract Rim seals are critical in terms of limiting the temperature of highly-stressed engine components but function with a penalty to the power output and contribute to entropy gain stemming from mixing losses in the turbine. Ingress through rim seals is influenced by the presence of rotor blades and stator vanes, and the mainstream flow coefficient in the annulus that determines the corresponding swirl. This paper presents an experimental study of ingress upstream and downstream of the rotor disc in a 1.5-stage rig with double radial clearance rim seals. Two rotor discs were used, one with blades and one without, and two platforms were used downstream of the rotor, one with vanes and one without. Tests were conducted at two rotational speeds and a range of flow conditions was achieved by varying the annulus and sealing mass flow rates. Concentration effectiveness, swirl and steady pressure measurements separated, for the first time, the influence of the blades and vanes on ingress over a wide range of flow conditions. Measurements on the downstream stator platform provide added insight into the complex interaction between the egress and the mainstream. Measurements of unsteady pressure revealed the presence of large-scale structures, even in the absence of blades. The number and speed of the structures was shown to depend on the flow coefficient and the purge flow rate.


Author(s):  
Marios Patinios ◽  
James A. Scobie ◽  
Carl M. Sangan ◽  
J. Michael Owen ◽  
Gary D. Lock

In gas turbines, hot mainstream flow can be ingested into the wheel-space formed between stator and rotor disks as a result of the circumferential pressure asymmetry in the annulus; this ingress can significantly affect the operating life, performance, and integrity of highly stressed, vulnerable engine components. Rim seals, fitted at the periphery of the disks, are used to minimize ingress and therefore reduce the amount of purge flow required to seal the wheel-space and cool the disks. This paper presents experimental results from a new 1.5-stage test facility designed to investigate ingress into the wheel-spaces upstream and downstream of a rotor disk. The fluid-dynamically scaled rig operates at incompressible flow conditions, far removed from the harsh environment of the engine which is not conducive to experimental measurements. The test facility features interchangeable rim-seal components, offering significant flexibility and expediency in terms of data collection over a wide range of sealing flow rates. The rig was specifically designed to enable an efficient method of ranking and quantifying the performance of generic and engine-specific seal geometries. The radial variation of CO2 gas concentration, pressure, and swirl is measured to explore, for the first time, the flow structure in both the upstream and downstream wheel-spaces. The measurements show that the concentration in the core is equal to that on the stator walls and that both distributions are virtually invariant with radius. These measurements confirm that mixing between ingress and egress is essentially complete immediately after the ingested fluid enters the wheel-space and that the fluid from the boundary layer on the stator is the source of that in the core. The swirl in the core is shown to determine the radial distribution of pressure in the wheel-space. The performance of a double radial-clearance seal is evaluated in terms of the variation of effectiveness with sealing flow rate for both the upstream and the downstream wheel-spaces and is found to be independent of rotational Reynolds number. A simple theoretical orifice model was fitted to the experimental data showing good agreement between theory and experiment for all cases. This observation is of great significance as it demonstrates that the theoretical model can accurately predict ingress even when it is driven by the complex unsteady pressure field in the annulus upstream and downstream of the rotor. The combination of the theoretical model and the new test rig with its flexibility and capability for detailed measurements provides a powerful tool for the engine rim-seal designer.


Author(s):  
Marios Patinios ◽  
James A. Scobie ◽  
Carl M. Sangan ◽  
J. Michael Owen ◽  
Gary D. Lock

In gas turbines, hot mainstream flow can be ingested into the wheel-space formed between stator and rotor discs as a result of the circumferential pressure asymmetry in the annulus; this ingress can significantly affect the operating life, performance and integrity of highly-stressed, vulnerable engine components. Rim seals, fitted at the periphery of the discs, are used to minimise ingress and therefore reduce the amount of purge flow required to seal the wheel-space and cool the discs. This paper presents experimental results from a new 1.5-stage test facility designed to investigate ingress into the wheel-spaces upstream and downstream of a rotor disc. The fluid-dynamically-scaled rig operates at incompressible flow conditions, far removed from the harsh environment of the engine which is not conducive to experimental measurements. The test facility features interchangeable rim-seal components, offering significant flexibility and expediency in terms of data collection over a wide range of sealing-flow rates. The rig was specifically designed to enable an efficient method of ranking and quantifying the performance of generic and engine-specific seal geometries. The radial variation of CO2 gas concentration, pressure and swirl is measured to explore, for the first time, the flow structure in both the upstream and downstream wheel-spaces. The measurements show that the concentration in the core is equal to that on the stator walls and that both distributions are virtually invariant with radius. These measurements confirm that mixing between ingress and egress is essentially complete immediately after the ingested fluid enters the wheel-space and that the fluid from the boundary-layer on the stator is the source of that in the core. The swirl in the core is shown to determine the radial distribution of pressure in the wheel-space. The performance of a double radial-clearance seal is evaluated in terms of the variation of effectiveness with sealing flow rate for both the upstream and the downstream wheel-spaces and is found to be independent of rotational Reynolds number. A simple theoretical orifice model was fitted to the experimental data showing good agreement between theory and experiment for all cases. This observation is of great significance as it demonstrates that the theoretical model can accurately predict ingress even when it is driven by the complex unsteady pressure field in the annulus upstream and downstream of the rotor. The combination of the theoretical model and the new test rig with its flexibility and capability for detailed measurements provides a powerful tool for the engine rim-seal designer.


2021 ◽  
Vol 5 ◽  
pp. 111-125
Author(s):  
Arijit Roy ◽  
Jens Fridh ◽  
James Scobie ◽  
Carl Sangan ◽  
Gary Lock

This paper investigates flow instabilities inside the cavity formed between the stator and rotor disks of a high-speed turbine rig. The cavity rim seal is of chute seal design. The influence of flow coefficient on the sealing effectiveness at constant purge flow rate through the wheel-space is determined. The effectiveness at different radial positions over a range of purge flow conditions and flow coefficients is also studied. Unsteady pressure measurements have identified the frequency of instabilities that form within the rim seal, phenomena which have been observed in other studies. Frequencies of these disturbances, and their correlation in the circumferential direction have determined the strength and speed of rotation of the instabilities within the cavity. Large scale unsteady rotational structures have been identified, which show similarity to previous studies. These disturbances have been found to be weakly dependent on the purge flow and flow coefficients, although an increased purge reduced both the intensity and speed of rotation of the instabilities. Additionally, certain uncorrelated disturbances have been found to be inconsistent (discontinuous) with pitchwise variation.


2021 ◽  
Author(s):  
Iván Monge-Concepción ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Michael D. Barringer ◽  
Karen A. Thole ◽  
...  

Abstract Hot gas ingestion into the turbine rim seal cavity is an important concern for engine designers. To prevent ingestion, rim seals use high pressure purge flow but excessive use of the purge flow decreases engine thermal efficiency. A single stage test turbine operating at engine-relevant conditions with real engine hardware was used to study time-resolved pressures in the rim seal cavity across a range of sealing purge flow rates. Vane trailing edge (VTE) flow, shown previously to be ingested into the rim seal cavity, was also included to understand its effect on the unsteady flow field. Measurements from high-frequency response pressure sensors in the rim seal and vane platform were used to determine rotational speed and quantity of large-scale structures (cells). In a parallel effort, a computational model using Unsteady Reynolds-averaged Navier-Stokes (URANS) was applied to determine swirl ratio in the rim seal cavity and time-resolved rim sealing effectiveness. The experimental results confirm that at low purge flow rates, the VTE flow influences the unsteady flow field by decreasing pressure unsteadiness in the rim seal cavity. Results show an increase in purge flow increases the number of unsteady large-scale structures in the rim seal and decreases their rotational speed. However, VTE flow was shown to not significantly change the cell speed and count in the rim seal. Simulations point to the importance of the large-scale cell structures in influencing rim sealing unsteadiness, which is not captured in current rim sealing predictive models.


Author(s):  
Fabian P. T. Hualca ◽  
Josh T. M. Horwood ◽  
Carl M. Sangan ◽  
Gary D. Lock ◽  
James A. Scobie

Abstract This paper presents experimental and computational results using a 1.5-stage test rig designed to investigate the effects of ingress through a double radial overlap rim-seal. The effect of the vanes and blades on ingress was investigated by a series of carefully-controlled experiments: firstly, the position of the vane relative to the rim seal was varied; secondly, the effect of the rotor blades was isolated using a disc with and without blades. Measurements of steady pressure in the annulus show a strong influence of the vane position. The relationship between sealing effectiveness and purge flow-rate exhibited a pronounced inflexion for intermediate levels of purge; the inflexion did not occur for experiments with a bladeless rotor. Shifting the vane closer to the rim-seal, and therefore the blade, caused a local increase in ingress in the inflexion region; again this effect was not observed for the bladeless experiments. Unsteady pressure measurements at the periphery of the wheel-space revealed the existence of large-scale pressure structures (or instabilities) which depended weakly on the vane position and sealing flow rate. These were measured with and without the blades on the rotor disc. In all cases these structures rotated close to the disc speed.


2019 ◽  
Vol 873 ◽  
pp. 89-109 ◽  
Author(s):  
Anagha Madhusudanan ◽  
Simon. J. Illingworth ◽  
Ivan Marusic

The wall-normal extent of the large-scale structures modelled by the linearized Navier–Stokes equations subject to stochastic forcing is directly compared to direct numerical simulation (DNS) data. A turbulent channel flow at a friction Reynolds number of $Re_{\unicode[STIX]{x1D70F}}=2000$ is considered. We use the two-dimensional (2-D) linear coherence spectrum (LCS) to perform the comparison over a wide range of energy-carrying streamwise and spanwise length scales. The study of the 2-D LCS from DNS indicates the presence of large-scale structures that are coherent over large wall-normal distances and that are self-similar. We find that, with the addition of an eddy viscosity profile, these features of the large-scale structures are captured by the linearized equations, except in the region close to the wall. To further study this coherence, a coherence-based estimation technique, spectral linear stochastic estimation, is used to build linear estimators from the linearized Navier–Stokes equations. The estimator uses the instantaneous streamwise velocity field or the 2-D streamwise energy spectrum at one wall-normal location (obtained from DNS) to predict the same quantity at a different wall-normal location. We find that the addition of an eddy viscosity profile significantly improves the estimation.


1981 ◽  
Vol 103 (1) ◽  
pp. 59-66 ◽  
Author(s):  
S. Fleeter ◽  
R. L. Jay ◽  
W. A. Bennett

The overall objective of this experimental program was to quantify the effects of rotor-stator axial spacing on the fundamental time-variant aerodynamics relevant to forced response in turbomachinery. This was accomplished in a large-scale, low-speed, single-stage research compressor which permitted two rotor-stator axial spacing ratios representative of those found in advanced design compressors to be investigated. At each value of the axial spacing ratio, the aerodynamically induced fluctuating surface pressure distributions on the downstream vane row, with the primary source of excitation being the upstream rotor wakes, were measured over a wide range of compressor operating conditions. The velocity fluctuations created by the passage of the rotor blades were measured in the nonrotating coordinate system. Data obtained described the variation of the rotor wake with both loading and axial distance from the rotor as parameters. These data also served as a reference in the analysis of the resulting time-variant pressure signals on the vane surfaces.


2021 ◽  
Author(s):  
Krzysztof Górka ◽  
Bartosz Kaźmierski ◽  
Łukasz Kapusta

In the present study, a flow rig with optical access intended for spray investigations in exhaust system-relevant conditions was analysed in terms of flow and temperature in the spray area using numerical simulations. The operation of the rig was examined for a wide range of exhaust mass flow rates, temperatures and various forms of UWS (urea-water solution) spray plumes. The locations of the injector and thermocouple were verified. Both conventional and flash-boiling injections were considered to assess the effect of the interaction of sprays with a gas flow. The results showed a highly uniform flow in the visualisation area, with only minor fluctuations near the walls. A similar observation was carried out for the temperature distribution. It was found that the extreme operating conditions caused substantial deformations of the spray plumes. However, the selected injector location allowed us to properly observe the spray formation regardless of the flow conditions. The study showed that the examined test rig enabled reliable spray investigations for a wide range of operating points.


2014 ◽  
Vol 10 (S309) ◽  
pp. 303-303
Author(s):  
A. Camps-Fariña ◽  
J. Beckman ◽  
J. Zaragoza-Cardiel ◽  
J. Font ◽  
K. Fathi

AbstractWe present a new method for the detection and characterization of large scale expansion in galaxy discs based on Hα Fabry-Perot spectroscopy, taking advantage of the high spatial and velocity resolution of our instrument (GHαFaS). The method analyses multi-peaked emission line profiles to find expansion along the line of sight on a pixel-by-pixel basis. At this stage we have centred our attention on the large scale structures of expansive gas which show a coherent gradient of velocities from their centres as a result of both bubble shape and projection effect. The results show a wide range of expansion velocities in these superbubbles, ranging from 30-150 km/s, with the expected trend of finding the higher velocities in the more violent areas of the galaxies. We have applied the technique to the Antennae and M83, obtaining spectacular results, and used these to investigate to what extent kinematically derived ages can be found and used to characterize the ages of their massive star clusters.


Sign in / Sign up

Export Citation Format

Share Document