scholarly journals Numerical analysis of the flow rig for UWS spray examination in exhaust system-relevant conditions

2021 ◽  
Author(s):  
Krzysztof Górka ◽  
Bartosz Kaźmierski ◽  
Łukasz Kapusta

In the present study, a flow rig with optical access intended for spray investigations in exhaust system-relevant conditions was analysed in terms of flow and temperature in the spray area using numerical simulations. The operation of the rig was examined for a wide range of exhaust mass flow rates, temperatures and various forms of UWS (urea-water solution) spray plumes. The locations of the injector and thermocouple were verified. Both conventional and flash-boiling injections were considered to assess the effect of the interaction of sprays with a gas flow. The results showed a highly uniform flow in the visualisation area, with only minor fluctuations near the walls. A similar observation was carried out for the temperature distribution. It was found that the extreme operating conditions caused substantial deformations of the spray plumes. However, the selected injector location allowed us to properly observe the spray formation regardless of the flow conditions. The study showed that the examined test rig enabled reliable spray investigations for a wide range of operating points.

Author(s):  
S. P. C. Belfroid ◽  
M. F. Cargnelutti ◽  
W. Schiferli ◽  
Marlies van Osch

To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1″ pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations were measured: a baseline case consisting of a straight pipe only, a sharp edged bend, a large radius bend, a symmetric T-joint and a T-joint with one of the arms closed off. The gas flow was varied from a superficial velocity of 0.1 to 30 m/s and the liquid flow was varied from 0.05 to 2 m/s. This operating range ensures that the experiment encompasses all possible flow regimes. The magnitude of the measured forces was found to vary over a wide range depending on the flow regime. For slug flow conditions very high force levels were measured, up to 4 orders of magnitude higher than in single phase flow for comparable velocities. The annular flow regime resulted in the (relative) lowest forces, although the absolute amplitude is of the same order as in the case of slug flow. In case of slug flow, the measured results can be described assuming a simple slug unit model. For both the frequency and amplitude the available models can be used in assessments. In annular and stratified flow a different model is required, since no slug unit is present. Instead, the amplitude of the excitation force can be estimated using mixture properties. To predict the main frequency for the annular flow and stratified flow additional experiments are required.


2014 ◽  
Vol 747 ◽  
pp. 119-140 ◽  
Author(s):  
E. Vandre ◽  
M. S. Carvalho ◽  
S. Kumar

AbstractCharacteristic substrate speeds and meniscus shapes associated with the onset of air entrainment are studied during dynamic wetting failure along a planar substrate. Using high-speed video, the behaviour of the dynamic contact line (DCL) is recorded as a tape substrate is drawn through a bath of a glycerol/water solution. Air entrainment is identified by triangular air films that elongate from the DCL above some critical substrate speed. Meniscus confinement within a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a wide range of liquid viscosities, expanding upon the findings of Vandre, Carvalho & Kumar (J. Fluid Mech., vol. 707, 2012, pp. 496–520). A pressurized liquid reservoir controls the meniscus position within the confinement gap. It is found that liquid pressurization further postpones air entrainment when the meniscus is located near a sharp corner along the stationary plate. Meniscus shapes recorded near the DCL demonstrate that operating conditions influence the size of entrained air films, with smaller films appearing in the more viscous solutions. Regardless of size, air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Recorded critical speeds and air-film sizes compare well to predictions from a hydrodynamic model for dynamic wetting failure, suggesting that strong air stresses near the DCL trigger the onset of air entrainment.


Author(s):  
Piotr Łuczyński ◽  
Dennis Toebben ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Klaus Helbig

In recent decades, the rising share of commonly subsidized renewable energy especially affects the operational strategy of conventional power plants. In pursuit of flexibility improvements, extension of life cycle, in addition to a reduction in start-up time, General Electric has developed a product to warm-keep high/intermediate pressure steam turbines using hot air. In order to optimize the warm-keeping operation and to gain knowledge about the dominant heat transfer phenomena and flow structures, detailed numerical investigations are required. Considering specific warm-keeping operating conditions characterized by high turbulent flows, it is required to conduct calculations based on time-consuming unsteady conjugate heat transfer (CHT) simulations. In order to investigate the warm-keeping process as found in the presented research, single and multistage numerical turbine models were developed. Furthermore, an innovative calculation approach called the Equalized Timescales Method (ET) was applied for the modeling of unsteady conjugate heat transfer (CHT). The unsteady approach improves the accuracy of the stationary simulations and enables the determination of the multistage turbine models. In the course of the research, two particular input variables of the ET approach — speed up factor (SF) and time step (TS) — have been additionally investigated with regard to their high impact on the calculation time and the quality of the results. Using the ET method, the mass flow rate and the rotational speed were varied to generate a database of warm-keeping operating points. The main goal of this work is to provide a comprehensive knowledge of the flow field and heat transfer in a wide range of turbine warm-keeping operations and to characterize the flow patterns observed at these operating points. For varying values of flow coefficient and angle of incidence, the secondary flow phenomena change from well-known vortex systems occurring in design operation (such as passage, horseshoe and corner vortices) to effects typical for windage, like patterns of alternating vortices and strong backflows. Furthermore, the identified flow patterns have been compared to vortex systems described in cited literature and summarized in the so-called blade vortex diagram. The comparison of heat transfer in the form of charts showing the variation of the Nusselt-numbers with respect to changes in angle of incidence and flow coefficients at specific operating points is additionally provided.


Author(s):  
Marcos F. Cargnelutti ◽  
Stefan P. C. Belfroid ◽  
Wouter Schiferli ◽  
Marlies van Osch

Air-water experiments were carried out in a horizontal 1″ pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations were measured: a baseline case consisting of straight pipe only, a sharp edged bend, a large radius bend, a symmetric T-joint and a T-joint with one of the arms closed off. The gas flow was varied from a superficial velocity of 0.1 to 30 m/s and the liquid flow was varied from 0.05 to 2 m/s. This operating range ensures that the experiment encompasses all possible flow regimes. In general, the slug velocity and frequency presented a reasonable agreement with classical models. However, for high mixture velocity the measured frequency deviated from literature models. The magnitude of the measured forces was found to vary over a wide range depending on the flow regime. For slug flow conditions very high force levels were measured, up to 4 orders of magnitude higher than in single phase flow for comparable velocities. The annular flow regime resulted in the (relative) lowest forces, although the absolute amplitude is of the same order as in the case of slug flow. These results from a one inch pipe were compared to data obtained previously from similar experiments on a 6mm setup, to evaluate the scaling effects. The results for the one inch rig experiments agreed with the model proposed by Riverin, with the same scaling factor. A modification of this scaling factor is needed for the model to predict the forces measured on the 6mm rig. The validity of the theories developed based on the 6mm experiments were tested for validity at larger scales. In case of slug flow, the measured results can be described assuming a simple slug unit model. In annular and stratified flow a different model is required, since no slug unit is present. Instead, excitation force can be estimated using mixture properties. This mixture approach also describes the forces for the slug regime relatively well. Only the single phase flow is not described properly with this mixture model, as would be expected.


Author(s):  
Hélène Chaumat ◽  
Anne-Marie Billet ◽  
Henri Delmas

A detailed investigation of local hydrodynamics in a pilot plant bubble column has been performed using various techniques, exploring both axial and radial variations of the gas hold-up, bubble average diameter and frequency, surface area. A wide range of operating conditions has been explored up to large gas and liquid flow rates, with two sparger types. Two main complementary techniques were used: a quasi local measurement of gas hold-up via series of differential pressure sensors to get the axial variation and a double optic probe giving radial variations of gad hold-up, bubble average size and frequency and surface area.According to axial evolutions, three zones, where radial evolutions have been detailed, have been separated: at the bottom the gas injection zone, the large central region or column bulk and the disengagement zone at the column top. It was found that significant axial and radial variations of the two phase flow characteristics do exist even in the so called homogeneous regime. The normalized profiles of bubble frequency appear sparger and gas velocity independent contrary to bubble diameter, gas hold-up and interfacial area normalized profiles. In any case bubbles are larger in the sparger zone than elsewhere.The main result of this work is the very strong effect of liquid flow on bubble column hydrodynamics at low gas flow rate. First the flow regime map observed in batch mode is dramatically modified with a drastic reduction of the homogeneous regime region, up to a complete heterogeneous regime in the working conditions (uG> 0.02 m/s). On the contrary, liquid flow has limited effects at very high gas flow rates.A large data bank is provided to be used for example in detailed comparison with CFD calculations.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6543
Author(s):  
Mieczysław Dzierzgowski

Laboratory measurements and analyses conducted in a wide range of changes of water temperature and mass flow rate for different types of radiators allowed to provides limitations and assessment of the current radiators heat transfer model according to EN 442. The inaccuracy to determinate the radiator heat output according to EN 442, in case of low water mass flow rates may achieve up to 22.3% A revised New Extended Heat Transfer Model in Radiators NEHTMiRmd is general and suitable for different types of radiators both new radiators and radiators existing after a certain period of operation is presented. The NEHTMiRmd with very high accuracy describes the heat transfer processes not only in the nominal conditions—in which the radiators are designed, but what is particularly important also in operating conditions when the radiators water mass flow differ significantly from the nominal value and at the same time the supply temperature changes in the whole range radiators operating during the heating season. In order to prove that the presented new model NEHTMiRmd is general, the article presents numerous calculation examples for various types of radiators currently used. Achieved the high compatibility of the results of the simulation calculations with the measurement results for different types of radiators: iron elements (not ribbed), plate radiators (medium degree ribbed), convectors (high degree ribbed) in a very wide range of changes in the water mass flow rates and the supply temperature indicates that a verified NEHTMiRmd can also be used in designing and simulating calculations of the central heating installations, for the rational conversion of existing installations and district heating systems into low temperature energy efficient systems as well as to directly determine the actual energy efficiency, also to improve the indications of the heat cost allocators. In addition, it may form the basis for the future modification of the European Standards for radiator testing.


Author(s):  
M. Ellis ◽  
C. Kurwitz ◽  
F. Best

In the microgravity environment experienced by space vehicles, liquid and gas do not naturally separate as on Earth. This behavior presents a problem for two-phase space systems, such as environment conditioning, waste water processing, and power systems. Furthermore, with recent renewed interest in space nuclear power systems, a microgravity Rankine cycle is attractive for thermal to electric energy conversion and would require a phase separation device. Responding to this need, researchers have conceived various methods of producing phase separation in low gravity environments. These separator types have included wicking, elbow, hydrophobic/hydrophilic, vortex, rotary fan separators, and combinations thereof. Each class of separator achieved acceptable performance for particular applications and most performed in some capacity for the space program. However, increased integration of multiphase systems requires a separator design adaptable to a variety of system operating conditions. To this end, researchers at Texas A&M University (TAMU) have developed a Microgravity Vortex Separator (MVS) capable of handling both a wide range of inlet conditions as well as changes in these conditions with a single, passive design. Currently, rotary separators are recognized as the most versatile microgravity separation technology. However, compared with passive designs, rotary separators suffer from higher power consumption, more complicated mechanical design, and higher maintenance requirements than passive separators. Furthermore, research completed over the past decade has shown the MVS more resistant to inlet flow variations and versatile in application. Most investigations were conducted as part of system integration experiments including, among others, propellant transfer, waste water processing, and fuel cell systems. Testing involved determination of hydrodynamic conditions relating to vortex stability, inlet quality effects, accumulation volume potential, and dynamic volume monitoring. In most cases, a 1.2 liter separator was found to accommodate system flow conditions. This size produced reliable phase separation for liquid flow rates from 1.8 to 9.8 liters per minute, for gas flow rates of 0.5 to 180 standard liters per minute, over the full range of quality, and with fluid inventory changes up to 0.35 liters. Moreover, an acoustic sensor, integrated into the wall of the separation chamber, allows liquid film thickness monitoring with an accuracy of 0.1 inches. Currently, application of the MVS is being extended to cabin air dehumidification and a Rankine power cycle system. Both of these projects will allow further development of the TAMU separator.


2020 ◽  
pp. 146808741989616 ◽  
Author(s):  
Qiyan Zhou ◽  
Tommaso Lucchini ◽  
Gianluca D’Errico ◽  
Gilles Hardy ◽  
Xingcai Lu

Fast and high-fidelity combustion models including detailed kinetics and turbulence chemistry interaction are necessary to support design and development of heavy-duty diesel engines. In this work, the authors intend to present and validate tabulated flamelet progress variable model based on tabulation of laminar diffusion flamelets for different scalar dissipation rate, whose predictability highly depends on the description of fuel–air mixing process in which engine mesh layout plays an important role. To this end, two grids were compared and assessed: in both grids, cells were aligned on the spray direction with such region being enlarged in the second one, where the near-nozzle and near-wall mesh resolution were also improved, which is expected to better account for both spray dynamics and flame–wall interaction dominating the combustion process in diesel engines. Flame structure, in-cylinder pressure, apparent heat release rate, and emissions for different relevant operating points were compared and analyzed to identify the most suitable mesh. Afterwards, simulations were carried out in a heavy-duty engine considering 20 operating points, allowing to comprehensively verify the validity of tabulated flamelet progress variable model. The results demonstrated that the proposed approach was capable to accurately predict in-cylinder pressure evolution and NO x formation across a wide engine map.


1995 ◽  
Vol 10 (2) ◽  
pp. 328-333 ◽  
Author(s):  
J.D. Klein ◽  
S.L. Clauson ◽  
S.F. Cogan

An Ir metal target was reactively rf sputtered in a planar magnetron source to develop iridium oxide deposition conditions. Gas blends of hydrogen, oxygen, and argon were used to provide competitive control over the reduction/oxidation characteristics of the sputter plasma. Optical emission spectroscopy allowed direct observation of hydrogen, oxygen, and iridium atomic peaks and OH molecular bands. Each of the twelve gas flow conditions could be clearly defined as either reducing or oxidizing by plasma emission spectroscopy. A given plasma reduction/oxidation state can be maintained over a wide range of gas flow conditions by coordinated adjustment of hydrogen and oxygen flows. The electrochemical properties of the iridium oxide films change dramatically in the vicinity of the reduction/oxidation plasma transition.


2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Changsung Sean Kim ◽  
Jongpa Hong ◽  
Jihye Shim ◽  
Bum Joon Kim ◽  
Hak-Hwan Kim ◽  
...  

A numerical and experimental study has been performed to characterize the metal organic vapor-phase epitaxy (MOVPE) growth of InGaN∕GaN multi-quantum-wells. One of the major objectives of the present study is to predict the optimal operating conditions that would be suitable for the fabrication of GaN-based light-emitting diodes using three different reactors, vertical, horizontal, and planetary. Computational fluid dynamics (CFD) simulations considering gas-phase chemical reactions and surface chemistry were carried out and compared with experimental measurements. Through a lot of CFD simulations, the database for the multiparametric dependency of indium incorporation and growth rate in InGaN∕GaN layers has been established in a wide range of growth conditions. Also, a heating system using radio frequency power was verified to obtain the uniform temperature distribution by simulating the electromagnetic field as well as gas flow fields. The present multidisciplinary approach has been applied to the development of a novel-concept MOVPE system as well as performance enhancement of existing commercial reactors.


Sign in / Sign up

Export Citation Format

Share Document