scholarly journals Shear-based deformation processing of age-hardened aluminum alloy for single-step sheet production

Author(s):  
Xiaolong Bai ◽  
Andrew Kustas ◽  
James B. Mann ◽  
Srinivasan Chandrasekar ◽  
Kevin P Trumble

Abstract Shear-based deformation processing by hybrid cutting-extrusion and free machining are used to make continuous strip, of thickness up to one millimeter, from low-workability AA6013-T6 in a single deformation step. The intense shear can impose effective strains as large as 2 in the strip without pre-heating of the workpiece. The creation of strip in a single step is facilitated by three factors inherent to the cutting deformation zone: highly confined shear deformation, in situ plastic deformation-induced heating and high hydrostatic pressure. The hybrid cutting-extrusion, which employs a second die located across from the primary cutting tool to constrain the chip geometry, is found to produce strip with smooth surfaces (Sa < 0.4 μm) that is similar to cold-rolled strip. The strips show an elongated grain microstructure that is inclined to the strip surfaces – a shear texture – that is quite different from rolled sheet. This shear texture (inclination) angle is determined by the deformation path. Through control of the deformation parameters such as strain and temperature, a range of microstructures and strengths could be achieved in the strip. When the cutting-based deformation was done at room temperature, without workpiece pre-heating, the starting T6 material was further strengthened by as much as 30% in a single step. In elevated-temperature cutting-extrusion, dynamic recrystallization was observed, resulting in a refined grain size in the strip. Implications for deformation processing of age-hardenable Al alloys into sheet form, and microstructure control therein, are discussed.

2021 ◽  
Vol 10 (2) ◽  
pp. 319
Author(s):  
Hee Cheol Yang ◽  
Won Jong Rhee

Because cancers are heterogeneous, it is evident that multiplexed detection is required to achieve disease diagnosis with high accuracy and specificity. Extracellular vesicles (EVs) have been a subject of great interest as sources of novel biomarkers for cancer liquid biopsy. However, EVs are nano-sized particles that are difficult to handle; thus, it is necessary to develop a method that enables efficient and straightforward EV biomarker detection. In the present study, we developed a method for single step in situ detection of EV surface proteins and inner miRNAs simultaneously using a flow cytometer. CD63 antibody and molecular beacon-21 were investigated for multiplexed biomarker detection in normal and cancer EVs. A phospholipid-polymer-phospholipid conjugate was introduced to induce clustering of the EVs analyzed using nanoparticle tracking analysis, which enhanced the detection signals. As a result, the method could detect and distinguish cancer cell-derived EVs using a flow cytometer. Thus, single step in situ detection of multiple EV biomarkers using a flow cytometer can be applied as a simple, labor- and time-saving, non-invasive liquid biopsy for the diagnosis of various diseases, including cancer.


2016 ◽  
Vol 113 (28) ◽  
pp. 7722-7726 ◽  
Author(s):  
Gavin O. Jones ◽  
Alexander Yuen ◽  
Rudy J. Wojtecki ◽  
James L. Hedrick ◽  
Jeannette M. García

It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2897
Author(s):  
Sílvia Petronilho ◽  
André Oliveira ◽  
M. Rosário Domingues ◽  
Fernando M. Nunes ◽  
Manuel A. Coimbra ◽  
...  

Starch is a promising candidate for preparing biodegradable films with useful gas barriers and thermoplastic capabilities. However, these materials are hydrophilic and brittle, thus limiting their application range. To overcome these drawbacks, it has been hypothesized that starch can be hydrophobized and plasticized during the starch-based film production using a single-step approach and following transesterification principles. In this work, KOH powder and spent frying oil (SFO) were used as an alkaline catalyst and a source for triacylglycerides, respectively, to promote the modification of starch. Different ratios of SFO (w/w related to the dried starch weight) were tested. When compared to the neat films (without a catalyst and SFO), the incorporation of at least 15% SFO/KOH gave rise to transparent, hydrophobic (water contact angles of ca. 90°), stretchable (ca. 20×), elastic (ca. 5×), and water tolerant starch-based films, contrary to the films produced without the catalyst. ATR-FTIR and 1H NMR revealed structural differences among the produced films, suggesting that starch was modified with the SFO-derived fatty acids. Therefore, adding KOH during the potato starch/spent frying oil-based film’s production was determined to be a promising in situ strategy to develop starch-based materials with improved hydrophobicity and flexibility, while valorizing the potato chip industry’s byproducts.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1545-1549 ◽  
Author(s):  
Masanori Daibata ◽  
Takahiro Taguchi ◽  
Yuiko Nemoto ◽  
Hirokuni Taguchi ◽  
Isao Miyoshi

Abstract Human herpesvirus 6 (HHV-6) genome has been detected in several human lymphoproliferative disorders with no signs of active viral infection, and found to be integrated into chromosomes in some cases. We previously reported a woman with HHV-6–infected Burkitt’s lymphoma. Fluorescence in situ hybridization showed that the viral genome was integrated into the long arm of chromosome 22 (22q13). The patient’s asymptomatic husband also carried HHV-6 DNA integrated at chromosome locus 1q44. To assess the possibility of chromosomal transmission of HHV-6 DNA, we looked for HHV-6 DNA in the peripheral blood of their daughter. She had HHV-6 DNA on both chromosomes 22q13 and 1q44, identical to the site of viral integration of her mother and father, respectively. The findings suggested that her viral genomes were inherited chromosomally from both parents. The 3 family members were all seropositive for HHV-6, but showed no serological signs of active infection. To confirm the presence of HHV-6 DNA sequences, we performed polymerase chain reaction (PCR) with 7 distinct primer pairs that target different regions of HHV-6. The viral sequences were consistently detected by single-step PCR in all 3 family members. We propose a novel latent form for HHV-6, in which integrated viral genome can be chromosomally transmitted. The possible role of the chromosomally integrated HHV-6 in the pathogenesis of lymphoproliferative diseases remains to be explained.


2020 ◽  
Vol 11 (41) ◽  
pp. 11280-11284
Author(s):  
Namita Singh ◽  
Sana Ahmed ◽  
Aliyah Fakim ◽  
Somayah Qutub ◽  
Othman Alahmed ◽  
...  

An emulsion-free approach for the preparation of hollow ZIF-8 superstructures in a single step is established based on metal sulfate hydrates in methanol.


2016 ◽  
Vol 4 (37) ◽  
pp. 14163-14169 ◽  
Author(s):  
Y. Wang ◽  
T. Liu ◽  
M. Li ◽  
C. Xia ◽  
B. Zhou ◽  
...  

A stable and catalytically active cathode consisting of homogeneously dispersed nano-socketed Fe–Ni particles has been elegantly fabricated in single-step treatment for solid oxide steam electrolysis cells via the in situ reduction of the Sr2Fe1.3Ni0.2Mo0.5O6 (SFMNi) material in a humidified H2 (3 vol% H2O) atmosphere at 800 °C.


Author(s):  
Karekin D. Esmeryan ◽  
Carlos E. Castano ◽  
Yulian I. Fedchenko ◽  
Reza Mohammadi ◽  
Ilko K. Miloushev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document