Effect Of Manufacturing Tolerance In Flow Past A Compressor Blade

2021 ◽  
pp. 1-24
Author(s):  
Venkatesh Suriyanarayanan ◽  
Quentin Rendu ◽  
Mehdi Vahdati ◽  
Loic Salles

Abstract This paper presents the effect of manufacturing tolerance on performance and stability boundaries of a transonic fan using a RANS simulation. The effect of tip gap and stagger angle was analysed through a series of single passage and double passage simulation; based on which an optimal arrangement was proposed for random tip gap and random stagger angle in case of a whole annulus rotor. All simulations were carried out using NASA rotor 67 as a test case and AU3D an in-house CFD solver. Results illustrate that the stagger angle mainly affects efficiency and hence its circumferential variation must be as smooth as possible. Furthermore, the tip gap affects the stability boundaries, pressure ratio and efficiency. Hence its optimal configuration mandates that the blades be configured in a zigzag arrangement around the annulus i.e. larger tip gap between two smaller ones.

Author(s):  
Hossein Khaleghi ◽  
Reza Jalaly

Half-annulus unsteady numerical simulations have been conducted with a 60-deg total pressure circumferential distortion in a transonic axial-flow fan. The effects of inlet distortion on the performance, stability and flow field of the test case are investigated and analyzed. Results show that the incidence angles are reduced when the blades are entering into the distorted region. Conversely, distortion increases the incidence angles onto the blades when they are leaving the distorted section. Results further reveal that the time-averaged flow field at the tip of the blade is similar with and without distortion. However, the distortion applied is found to have detrimental effects on both the stability and performance. The impacts of both annular and discrete tip injection on the endwall flow field are further studied in the current work. It is shown that endwall injection reduces the incidence angles onto the blades. Consequently, the passage shock and the leakage flow are pushed rearward, which postpones stall initiation.


Author(s):  
C. Xu ◽  
R. S. Amano

With the development of the advanced technology, the combustion temperature is raised for increased efficiencies. At the same time, the turbine and compressor pressure ratio and the mass flow rate rise; thus causing turbine and compressor blades turning and blade lengths increase. Moreover, the high efficiency requirements had made the turbine and compressor blade design difficult. A turbine airfoil has been custom designed for many years, but an optimization for the section design in a three-dimensional consideration is still a challenge. For a compressor blade design, standard section cannot meet the modern compressor requirements. Modern compressor design has not only needs a custom designed section according to flow situation, but also needs three-dimensional optimizations. Therefore, a good blade design process is critical to the turbines and compressors. A blade design of the turbomachines is one of the important steps for a good turbomachine design. A blade design process not only directly influences the overall machine efficiency but also dramatically impact the design time and cost. In this study, a blade design and optimization procedure was proposed for both turbine and compressor blade design. A compressor blade design was used as a test case. It was shown that the current design process had more advantages than conventional design methodology.


Author(s):  
Yaozhi Lu ◽  
Bharat Lad ◽  
Mehdi Vahdati

Abstract Due to manufacturing tolerance and deterioration during operation, different blades in a fan assembly exhibit geometric variability. This leads to asymmetry which will be amplified in the running geometry by centrifugal and aerodynamic loads. This study investigates a phenomenon known as Alternate Passage Divergence (APD), where the blade untwist creates an alternating pattern in passage geometry and stagger angle around the circumference. After the formation of alternating tip stagger pattern, APD’s unsteady effect, APD-induced Non-Synchronous Vibration (APD-NSV), can cause the blades from one group to switch to the other creating a travelling wave pattern around the circumference. Thus, it can potentially lead to high cycle fatigue issues. More importantly, this phenomenon occurs close to, or at, peak efficiency conditions and can significantly reduce overall efficiency. Therefore, it is vital to attenuate the NSV behaviour. In this study, an redesign approach is investigated.


Author(s):  
Yaozhi Lu ◽  
Bharat Lad ◽  
Mehdi Vahdati

Abstract Due to manufacturing tolerance and deterioration during operation, different blades in a fan assembly exhibit geometric variability. This leads to asymmetry which will be amplified in the running geometry by centrifugal and aerodynamic loads. This study investigates a phenomenon known as Alternate Passage Divergence (APD), where the blade untwist creates an alternating pattern in passage geometry and stagger angle around the circumference. After the formation of alternating tip stagger pattern, APD's unsteady effect, APD-induced Non-Synchronous Vibration (APD-NSV), can cause the blades from one group to switch to the other creating a travelling wave pattern around the circumference. Thus, it can potentially lead to high cycle fatigue issues. More importantly, this phenomenon occurs close to, or at, peak efficiency conditions and can significantly reduce overall efficiency. Therefore, it is vital to attenuate the NSV behaviour. In this study, an redesign approach is investigated.


Author(s):  
C. Xu ◽  
R. S. Amano

With the development of the advanced technology, the combustion temperature is raised for increased efficiencies. At the same time, the turbine and compressor pressure ratio and the mass flow rate rise; thus causing turbine and compressor blades turning and blade lengths increase. Moreover, the high efficiency requirements had made the turbine and compressor blade design difficult. A turbine airfoil has been custom designed for many years, but an optimization for the section design in a three-dimensional consideration is still a challenge. For a compressor blade design, standard section cannot meet the modern compressor requirements. Modern compressor design has not only needs a custom designed section according to flow situation, but also needs three-dimensional optimizations. Therefore, a good blade design process is critical to the turbines and compressors. A blade design of the turbomachines is one of the important steps for a good turbomachine design. A blade design process not only directly influences the overall machine efficiency but also dramatically impact the design time and cost. In this study, a blade design and optimization procedure was proposed for both turbine and compressor blade design. A compressor blade design was used as a test case. It was shown that the current design process had more advantages than conventional design methodology.


Author(s):  
Yaozhi Lu ◽  
Bharat Lad ◽  
Mehdi Vahdati ◽  
Sina C. Stapelfeldt

Abstract Due to manufacturing tolerance and deterioration during operation, fan blades in the aero-engine exhibit geometric variability. This leads to asymmetry in the assembly which will be amplified in the running geometry by centrifugal and aerodynamic loads. This study investigates a phenomenon known as Alternative Passage Divergence (APD), where the blade untwist creates an alternating pattern in passage geometry and stagger angle around the circumference, resulting in two groups of blades. This phenomenon occurs close to, or at, peak efficiency conditions and can significantly reduce overall efficiency. This study focuses on a type of non-integral vibration which occurs during APD. After the formation of alternating tip stagger pattern, APDs unsteady effect can cause the blades from one group to switch to the other, creating a travelling wave pattern around the circumference.It was found from numerical assessment on a randomly mis-staggered assembly that real engines can potentially experience such travelling disturbance and suffer fatigue damage. An idealised case is used to capture the bulk behaviour from the more complex cases in real engines and to decipher the underlying mechanism of this travelling disturbance. The results indicate that the driving force originates from the interaction between passage shock displacement and the passage geometry.


2005 ◽  
Vol 5 (1) ◽  
pp. 3-50 ◽  
Author(s):  
Alexei A. Gulin

AbstractA review of the stability theory of symmetrizable time-dependent difference schemes is represented. The notion of the operator-difference scheme is introduced and general ideas about stability in the sense of the initial data and in the sense of the right hand side are formulated. Further, the so-called symmetrizable difference schemes are considered in detail for which we manage to formulate the unimprovable necessary and su±cient conditions of stability in the sense of the initial data. The schemes with variable weight multipliers are a typical representative of symmetrizable difference schemes. For such schemes a numerical algorithm is proposed and realized for constructing stability boundaries.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 525 ◽  
Author(s):  
Mehdi Keshavarz-Ghorabaee ◽  
Maghsoud Amiri ◽  
Edmundas Kazimieras Zavadskas ◽  
Zenonas Turskis ◽  
Jurgita Antucheviciene

The weights of criteria in multi-criteria decision-making (MCDM) problems are essential elements that can significantly affect the results. Accordingly, researchers developed and presented several methods to determine criteria weights. Weighting methods could be objective, subjective, and integrated. This study introduces a new method, called MEREC (MEthod based on the Removal Effects of Criteria), to determine criteria’ objective weights. This method uses a novel idea for weighting criteria. After systematically introducing the method, we present some computational analyses to confirm the efficiency of the MEREC. Firstly, an illustrative example demonstrates the procedure of the MEREC for calculation of the weights of criteria. Secondly, a comparative analysis is presented through an example for validation of the introduced method’s results. Additionally, we perform a simulation-based analysis to verify the reliability of MEREC and the stability of its results. The data of the MCDM problems generated for making this analysis follow a prevalent symmetric distribution (normal distribution). We compare the results of the MEREC with some other objective weighting methods in this analysis, and the analysis of means (ANOM) for variances shows the stability of its results. The conducted analyses demonstrate that the MEREC is efficient to determine objective weights of criteria.


2021 ◽  
Vol 11 (11) ◽  
pp. 4833
Author(s):  
Afroja Akter ◽  
Md. Jahedul Islam ◽  
Javid Atai

We study the stability characteristics of zero-velocity gap solitons in dual-core Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity. The model supports two disjointed families of gap solitons (Type 1 and Type 2). Additionally, asymmetric and symmetric solitons exist in both Type 1 and Type 2 families. A comprehensive numerical stability analysis is performed to analyze the stability of solitons. It is found that dispersive reflectivity improves the stability of both types of solitons. Nontrivial stability boundaries have been identified within the bandgap for each family of solitons. The effects and interplay of dispersive reflectivity and the coupling coefficient on the stability regions are also analyzed.


Sign in / Sign up

Export Citation Format

Share Document