Damage Analysis in Ag Nanoparticle Interconnect Line Under High-Density Electric Current

Author(s):  
Daiki Saito ◽  
Kazuhiko Sasagawa ◽  
Takeshi Moriwaki ◽  
Kazuhiro Fujisaki

Abstract Printed electronics (PEs) have attracted attention for the fabrication of microscale electronic circuits. PEs use conductive inks which include metal nanoparticles. The conductive ink can be printed on flexible substrates for wearable devices using ink-jet printers and roll-to-roll methods. With the scaling down of electric devices, the current density and Joule heating in the device lines increase, and electromigration (EM) damage becomes significant. EM is a transportation phenomenon of metallic atoms caused by the electron wind under high-density current. Reducing the EM damage is extremely important to enhance the device reliability. With the progress in miniaturization of the metal nanoparticle ink lines, EM problem needs to be solved for ensuring the reliability of these lines. We know that the formation of aggregates and cathode damages occur due to a current loading. The diffusion path of atoms due to the EM has not been identified under the high-density current loading. In this study, a high-density electric current loading was applied to an Ag nanoparticle line. The line specimens were prepared using a lift-off method. After the current loading tests, observations were conducted using a laser microscope and scanning electron microscope. A local decrease in the line thickness and scale-shaped slit-like voids were observed due to the high-density current loading. Moreover, the microstructure of the line was modified by enlarging the Ag grain. From the results, we identified that a dominant diffusion occurred at the Ag grain boundary due to the EM.

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Daiki Saito ◽  
Kazuhiko Sasagawa ◽  
Takeshi Moriwaki ◽  
Kazuhiro Fujisaki

Abstract Flexible printed circuits (FPCs) are widely used in electronic equipment such as mobile devices and wearable sensors. The conductive electric lines in these circuits are printed using nanoparticle metal ink and ink-jet direct write methods. Physical characteristics such as flexibility and mechanical durability of metal nanoparticle ink lines have been evaluated by bending or tensile tests. In contrast, the electrical characteristics of these lines have not been sufficiently evaluated, and the failure mechanism under high-density current has not been clarified. When electric devices are scaled down, current density and Joule heating increase in conductive lines and electromigration (EM) damage becomes a severe problem. Therefore, reducing the EM damage is extremely important to enhance the device reliability. In this study, a failure analysis of Ag nanoparticle ink lines were assessed using current loading tests and microscopic observations to discuss the damage mechanism and evaluate electrical reliability under high-density current. Atomic transport due to EM was observed at 60 kA/cm2 current loading, and relatively large aggregates and grain growth were observed at 120 kA/cm2 current loading. The time to open circuit was longer at 120 kA/cm2 than at 60 kA/cm2. The formation of large aggregates and unstable changes in the potential drop were observed at the two values of current density. It is considered that aggregate formation and grain growth affected the atomic transport by EM.


Author(s):  
Daiki Saito ◽  
Kazuhiko Sasagawa ◽  
Takeshi Moriwaki ◽  
Kazuhiro Fujisaki

Abstract Flexible printed circuits (FPCs) are widely used in electronic devices such as movable part line or wearable sensor. Photolithography is one of the most popular processes for fabricating electric interconnect lines. However, inkjet printing has attracted attention because the method can draw an arbitrary-shape electric lines without any mask. Therefore, nanoparticle metal ink is widely used for printing of conductive electric lines with lowering cost and small-lot production. The physical characteristics such as flexibility or durability of metal nanoparticle ink lines have been evaluated by bending or tensile tests. By contrast, the evaluation method has not been sufficiently established for the electrical characteristics of these lines, and the failure mechanism under high-current density has not been clarified. According to scaling down of electric devices, current density and Joule heating in device lines increase and electromigration (EM) damage becomes a serious problem. EM is a transportation phenomenon of metallic atoms caused by electron wind under high-current density. Reducing EM damage is extremely important to enhance device reliability. In this study, current loading tests of metal nanoparticle ink line were performed to discuss damage mechanism and evaluate electrical reliability under high-current density condition. As the results of current loading tests, the thickness of cathode part of straight-test line was decreased. It is considered that atomic transport from the cathode to the anode occurred by EM phenomenon. The line surface became rough and aggregates of particles generated at middle or anode parts of straight-test line by high-current loading. Both of atomic transport and aggregate generation were closely related the changes of potential drop, their dominances were varied depending the current density value.


2019 ◽  
Vol 48 (11) ◽  
pp. 6949-6953 ◽  
Author(s):  
Takeshi Moriwaki ◽  
Kazuhiko Sasagawa ◽  
Yusuke Sugawara ◽  
Kazuhiro Fujisaki ◽  
Takahiro Mineta

2021 ◽  
Author(s):  
Ryota Horiuchi ◽  
Kazuhiko Sasagawa ◽  
Kazuhiro Fujisaki

Abstract Flexible printed circuits (FPCs) are widely used in electronic devices such as movable part line or wearable sensor. Inkjet printing is attracting attention because it can draw electric lines of any shape without a photo mask. The mechanical characteristics such as flexibility or durability of electric lines have been evaluated by bending and tensile tests. Moreover, the reliability characteristics of metal particle ink lines under electric current loading have been recently evaluated. However, the electronic line has not been evaluated under both the mechanical stress due to bending deformation and the electrical stress due to electric current. According to scaling down of electric devices, the current density and Joule heat in interconnect line increase and electromigration (EM) damage becomes a serious problem. EM is a transportation phenomenon of metallic atoms caused by electron wind under high-density electric current. Reducing EM damage is extremely important to enhance device reliability. In this study, high-density current loading tests of flexible electronic line were conducted under bending deformation of the substrate in order to investigate the effect of mechanical stress on the EM damage of the electronic line. As the results of current loading tests, the specimens with bending deformation became open circuits in shorter time than that without bending deformation. Therefore, it is considered that the bending deformation is affected on the electric reliability characteristic of the flexible electronic lines reflecting EM damage.


2010 ◽  
Vol 21 (11) ◽  
pp. 1213-1220 ◽  
Author(s):  
Jin Sung Kang ◽  
Hak Sung Kim ◽  
Jongeun Ryu ◽  
H. Thomas Hahn ◽  
Seonhee Jang ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Serap Yiğit Gezgin ◽  
Abdullah Kepceoğlu ◽  
Hamdi Şükür Kiliç

In this study, silver (Ag) nanoparticle thin films were deposited on microscope slide glass and Si wafer substrates using the pulsed-laser deposition (PLD) technique in Ar ambient gas pressures of 1 × 10−3 and 7.5 × 10−1 mbar. AFM analysis has shown that the number of Ag nanoparticles reaching the substrate decreased with increasing Ar gas pressure. As a result of Ar ambient gas being allowed into the vacuum chamber, it was observed that the size and height of Ag nanoparticles decreased and the interparticle distances decreased. According to the absorption spectra taken by a UV–vis spectrometer, the wavelength where the localised surface plasmon resonance (LSPR) peak appeared was shifted towards the longer wavelength region in the solar spectrum as Ar background gas pressure was decreased. This experiment shows that LSPR wavelength can be tuned by adjusting the size of metal nanoparticles, which can be controlled by changing Ar gas pressure. The obtained extinction cross section spectra for Ag nanoparticle thin film was theoretically analysed and determined by using the metal nanoparticle–boundary element method (MNPBEM) toolbox simulation program. In this study, experimental spectrum and simulation data for metal nanoparticles were acquired, compared, and determined to be in agreement.


Sign in / Sign up

Export Citation Format

Share Document