A Comparison of Flow Fields Predicted by Various Turbulent Lubrication Models With Existing Measurements

1999 ◽  
Vol 122 (2) ◽  
pp. 475-477 ◽  
Author(s):  
Xiaojing Wang ◽  
Zhiming Zhang ◽  
Meili Sun

Flow field predictions of various turbulent lubrication models are compared with the existing experimental data of turbulent Couette flow and shear-induced countercurrent flow. [S0742-4787(00)00502-6]

Author(s):  
Shi-bin Luo ◽  
Wei Huang ◽  
Hui Qin ◽  
Zhen-guo Wang ◽  
Jun Liu ◽  
...  

The two-dimensional coupled implicit RANS equations and three turbulent models have been employed to numerically simulate the nonreacting and reacting flow fields of a typical strut-based scramjet combustor, and the numerical results have been compared with the experimental data. At the same time, three different grid scales have been used to test the grid independence in the numerical simulations, namely the small scale (81,590 nodes), the moderate scale (98,510 nodes) and the large scale (147,470 nodes). The obtained results show that the RNG k-ε model is more suitable to numerically simulate the flow field in the scramjet combustor than the realizable k-ε model and the SST k-ω model, and the numerical results obtained by the moderate and large grid scales show reasonably better agreement with the experimental data. The quasi-diamond wave system is formed in both the nonreacting and reacting flow fields. In the reacting flow field, there are two clear strong shear layers generated between the fuel injection and the supersonic freestream, and at the intersection point between the shear layer and the reflected shock wave, the reaction zone is broader than anywhere else. In the corner formed between the upper surface of the strut and the shear layer, an expansion wave is clearly generated, and another also exists in the symmetrical corner.


Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


2013 ◽  
Vol 291-294 ◽  
pp. 1981-1984
Author(s):  
Zhang Xia Guo ◽  
Yu Tian Pan ◽  
Yong Cun Wang ◽  
Hai Yan Zhang

Gunpowder was released in an instant when the pill fly out of the shell during the firing, and then formed a complicated flow fields about the muzzle when the gas expanded sharply. Using the 2 d axisymmetric Navier-Stokes equation combined with single equation turbulent model to conduct the numerical simulation of the process of gunpowder gass evacuating out of the shell without muzzle regardless of the pill’s movement. The numerical simulation result was identical with the experimental. Then simulated the evacuating process of gunpowder gass of an artillery with muzzle brake. The result showed complicated wave structure of the flow fields with the muzzle brake and analysed the influence of muzzle brake to the gass flow field distribution.


1979 ◽  
Vol 21 (1) ◽  
pp. 1-6 ◽  
Author(s):  
D. Adler ◽  
Y. Levy

A laser-Doppler technique is successfully applied to measure the flow field inside a closed, backswept impeller, through a rotating window. Results show that, in contrast to the flow in many radial-exit impellers, the flow in the backswept impeller is stable and attached. Further, comparison with an open impeller demonstrates the fundamental difference in the flow fields near the shroud.


2006 ◽  
Vol 4 (3) ◽  
pp. 365-368 ◽  
Author(s):  
Guo-Bin Jung ◽  
Ay Su ◽  
Cheng-Hsin Tu ◽  
Fang-Bor Weng ◽  
Shih-Hung Chan

The flow-field design of direct methanol fuel cells (DMFCs) is an important subject about DMFC performance. Flow fields play an important role in the ability to transport fuel and drive out the products (H2O,CO2). In general, most fuel cells utilize the same structure of flow field for both anode and cathode. The popular flow fields used for DMFCs are parallel and grid designs. Nevertheless, the characteristics of reactants and products are entirely different in anode and cathode of DMFCs. Therefore, the influences of flow fields design on cell performance were investigated based on the same logic with respect to the catalyst used for cathode and anode nonsymmetrically. To get a better and more stable performance of DMFCs, three flow fields (parallel, grid, and serpentine) utilized with different combinations were studied in this research. As a consequence, by using parallel flow field in the anode side and serpentine flow-field in the cathode, the highest power output was obtained.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


2021 ◽  
Author(s):  
Rishabh Prakash Sharma ◽  
Max P. Cooper ◽  
Anthony J.C. Ladd ◽  
Piotr Szymczak

<p>Dissolution of porous rocks by reactive fluids is a highly nonlinear process resulting in a variety of dissolution patterns, the character of which depends on physical conditions such as flow rate and reactivity of the fluid. Long, finger-like dissolution channels, “wormholes”, are the main subject of interest in the literature, however, the underlying dynamics of their growth remains unclear. </p><p>While analyzing the tomography data on wormhole growth.  one open question is to define the exact position of the tip of the wormhole. Near the tip the wormhole gradually thins out and the proper resolution of its features is hindered by the finite spatial resolution of the tomographs. In particular, we often observe in the near-tip region several disconnected regions of porosity growth, which - as we hypothesized - are connected by the dissolution channels at subpixel scale. In this study, we show how these features can be better resolved by using numerically calculated flow fields in the reconstructed pore-space. </p><p>We used 70 micrometers, 16-bit grayscale X-ray computed microtomography (XCMT) time series scans of limestone cores, 14mm in diameter and 25mm in length. Scans were performed during the entire dissolution experiment with an interval of 8 minutes. These scans were further processed using a 3-phase segmentation proposed by Luquot et al.[1], in which grayscale voxels are converted to macro-porosity, micro-porosity and grain phases from their grayscale values. The macro-porous phase is assigned a porosity of 1, while the grain phase is assigned 0. Micro-porous regions are assigned an intermediate value determined by linear interpolation between pore and grain threshold using grayscale values. An OpenFOAM based, Darcy-Brinkman solver, porousFoam, is then used to calculate the flow field in this extracted porosity field. </p><p>Porosity contours reconstructed from the tomographs show some disconnected porosity growth near the tip region which later become part of the wormhole in subsequent scans. We have used a novel approach by including the micro-porosity phase in pore-space to calculate the flow-fields in the near-tip region. The calculated flow fields clearly show an extended region of focused flow in front of the wormhole tip, which is a manifestation of the presence of a wormhole at the subpixel scale. These results show that micro-porosity plays an important role in dissolution and 3-phase segmentation combined with the flow field calculations is able to capture the sub-resolved dissolution channels. </p><p> </p><p> [1] Luquot, L., Rodriguez, O., and Gouze, P.: Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes, Transport Porous Med., 101, 507–532, 2014</p>


Author(s):  
Tommaso Bacci ◽  
Tommaso Lenzi ◽  
Alessio Picchi ◽  
Lorenzo Mazzei ◽  
Bruno Facchini

Modern lean burn aero-engine combustors make use of relevant swirl degrees for flame stabilization. Moreover, important temperature distortions are generated, in tangential and radial directions, due to discrete fuel injection and liner cooling flows respectively. At the same time, more efficient devices are employed for liner cooling and a less intense mixing with the mainstream occurs. As a result, aggressive swirl fields, high turbulence intensities, and strong hot streaks are achieved at the turbine inlet. In order to understand combustor-turbine flow field interactions, it is mandatory to collect reliable experimental data at representative flow conditions. While the separated effects of temperature, swirl, and turbulence on the first turbine stage have been widely investigated, reduced experimental data is available when it comes to consider all these factors together.In this perspective, an annular three-sector combustor simulator with fully cooled high pressure vanes has been designed and installed at the THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion cooled liners, and six film cooled high pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central NGV aligned with the central swirler. In order to generate representative conditions, a heated mainstream passes though the axial swirlers of the combustor simulator, while the effusion cooled liners are fed by air at ambient temperature. The resulting flow field exiting from the combustor simulator and approaching the cooled vane can be considered representative of a modern Lean Burn aero engine combustor with swirl angles above ±50 deg, turbulence intensities up to about 28% and maximum-to-minimum temperature ratio of about 1.25. With the final aim of investigating the hot streaks evolution through the cooled high pressure vane, the mean aerothermal field (temperature, pressure, and velocity fields) has been evaluated by means of a five-hole probe equipped with a thermocouple and traversed upstream and downstream of the NGV cascade.


Author(s):  
Martin Lipfert ◽  
Jan Habermann ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Yavuz Guendogdu

In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the altitude test-facility aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multi-stage CFD predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positve incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions vane 1 passage vortex fluid is involved in the midspan passage interaction leading to a more distorted three-dimensional flow field.


Author(s):  
Tom Gerhard ◽  
Michael Sturm ◽  
Thomas H. Carolus

State-of-the-art wind turbine performance prediction is mainly based on semi-analytical models, incorporating blade element momentum (BEM) analysis and empirical models. Full numerical simulation methods can yield the performance of a wind turbine without empirical assumptions. Inherent difficulties are the large computational domain required to capture all effects of the unbounded ambient flow field and the fact that the boundary layer on the blade may be transitional. A modified turbine design method in terms of the velocity triangles, Euler’s turbine equation and BEM is developed. Lift and drag coefficients are obtained from XFOIL, an open source 2D design and analysis tool for subcritical airfoils. A 3 m diameter horizontal axis wind turbine rotor was designed and manufactured. The flow field is predicted by means of a Reynolds-averaged Navier-Stokes simulation. Two turbulence models were utilized: (i) a standard k-ω-SST model, (ii) a laminar/turbulent transition model. The manufactured turbine is placed on the rooftop of the University of Siegen. Three wind anemometers and wind direction sensors are arranged around the turbine. The torque is derived from electric power and the rotational speed via a calibrated grid-connected generator. The agreement between the analytically and CFD-predicted kinematic quantities up- and downstream of the rotor disc is quite satisfactory. However, the blade section drag to lift ratio and hence the power coefficient vary with the turbulence model chosen. Moreover, the experimentally determined power coefficient is considerably lower as predicted by all methods. However, this conclusion is somewhat preliminary since the existing experimental data set needs to be extended.


Sign in / Sign up

Export Citation Format

Share Document