Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material

Author(s):  
Zhen-Xue Han ◽  
Brian H. Dennis ◽  
George S. Dulikravich

A two-dimensional (2-D) and a three-dimensional (3-D) conjugate heat transfer (convection-conduction) prediction codes were developed where the compressible turbulent flow Navier-Stokes equations are solved simultaneously in the flow-field and in the solid material of the structure thus automatically predicting correct magnitudes and distribution of surface temperatures and heat fluxes. The only thermal boundary conditions are the convection heat transfer coefficients specified on the surfaces of the internal coolant flow passages and the coolant bulk temperature of internally cooled gas turbine blade. This approach eliminates the need to specify hot surface temperature or heat flux distribution. The conjugate codes use hybrid unstructured triangular/quadrilateral grids in 2-D and unstructured prismatic grids in 3-D throughout the flow-field and in the surrounding structure. The codes are capable of conjugate heat transfer prediction in arbitrarily shaped internally cooled configurations. The computer codes have been successfully tested on internally cooled turbine airfoil cascades and 3-D turbine blades by the conjugate solution of the flow-field and the temperature field inside the structure.

Author(s):  
Andreas Jeromin ◽  
Christian Eichler ◽  
Berthold Noll ◽  
Manfred Aigner

Numerical predictions of conjugate heat transfer on an effusion cooled flat plate were performed and compared to detailed experimental data. The commercial package CFX® is used as flow solver. The effusion holes in the referenced experiment had an inclination angle of 17 degrees and were distributed in a staggered array of 7 rows. The geometry and boundary conditions in the experiments were derived from modern gas turbine combustors. The computational domain contains a plenum chamber for coolant supply, a solid wall and the main flow duct. Conjugate heat transfer conditions are applied in order to couple the heat fluxes between the fluid region and the solid wall. The fluid domain contains 2.4 million nodes, the solid domain 300,000 nodes. Turbulence modeling is provided by the SST turbulence model which allows the resolution of the laminar sublayer without wall functions. The numerical predictions of velocity and temperature distributions at certain locations show significant differences to the experimental data in velocity and temperature profiles. It is assumed that this behavior is due to inappropriate modeling of turbulence especially in the effusion hole. Nonetheless, the numerically predicted heat transfer coefficients are in good agreement with the experimental data at low blowing ratios.


Author(s):  
Karthik Krishnaswamy ◽  
◽  
Srikanth Salyan ◽  

The performance of a gas turbine during the service life can be enhanced by cooling the turbine blades efficiently. The objective of this study is to achieve high thermohydraulic performance (THP) inside a cooling passage of a turbine blade having aspect ratio (AR) 1:5 by using discrete W and V-shaped ribs. Hydraulic diameter (Dh) of the cooling passage is 50 mm. Ribs are positioned facing downstream with angle-of-attack (α) of 30° and 45° for discrete W-ribs and discerte V-ribs respectively. The rib profiles with rib height to hydraulic diameter ratio (e/Dh) or blockage ratio 0.06 and pitch (P) 36 mm are tested for Reynolds number (Re) range 30000-75000. Analysis reveals that, area averaged Nusselt numbers of the rib profiles are comparable, with maximum difference of 6% at Re 30000, which is within the limits of uncertainty. Variation of local heat transfer coefficients along the stream exhibited a saw tooth profile, with discrete W-ribs exhibiting higher variations. Along spanwise direction, discrete V-ribs showed larger variations. Maximum variation in local heat transfer coefficients is estimated to be 25%. For experimented Re range, friction loss for discrete W-ribs is higher than discrete-V ribs. Rib profiles exhibited superior heat transfer capabilities. The best Nu/Nuo achieved for discrete Vribs is 3.4 and discrete W-ribs is 3.6. In view of superior heat transfer capabilities, ribs can be deployed in cooling passages near the leading edge, where the temperatures are very high. The best THPo achieved is 3.2 for discrete V-ribs and 3 for discrete W-ribs at Re 30000. The ribs can also enhance the power-toweight ratio as they can produce high thermohydraulic performances for low blockage ratios.


Author(s):  
P. J. Disimile ◽  
D. M. Paule

The primary objective of this paper is to present the results of research into the effects of periodic excitation upon the local heat transfer characteristics of a turbine blade cooled by an impinging jet of air. A curved plate (used to simulate the inner leading edge of a turbine blade) was subjected to a two-dimensional jet flow field (Re = 10,000) with a superimposed periodic acoustic disturbance. When compared to the naturally disturbed flow, the excited flow field was found to reduce the local Nusselt number and cool the blade less efficiently (by as much as ten percent in the extreme cases). The results of the study appear to indicate that harmonic disturbances present a serious controlling factor in the quest for optimization of turbine blade cooling techniques. By isolating dominant frequencies in gas turbine engines and working to suppress them, the authors believe it possible to make significant contributions towards the desired increase in turbine inlet temperature.


Author(s):  
Yaping Ju ◽  
Yi Feng ◽  
Chuhua Zhang

Abstract Reynolds averaged Navier-Stokes model-based conjugate heat transfer method is popularly used in simulations and designs of internally cooled gas turbine blades. One of the important factors influencing its prediction accuracy is the choice of turbulence models for different fluid regions because the blade passage flow and internal cooling have considerably different flow features. However, most studies adopted the same turbulence models in passage flow and internal cooling. Another important issue is the comprehensive evaluation of the losses caused by flow and heat transfer for both fluid and solid regions. In this study, a RANS-based CHT solver for subsonic/transonic flows was developed based on OpenFOAM and validated and used to explore suitable RANS turbulence model combinations for internally cooled gas turbine blades. Entropy generation, able to weigh the losses caused by flow friction and heat transfer, was used in the analyses of two internally cooled vanes to reveal the loss mechanisms. Findings indicate that the combination of the k-? SST-?-Re? transition model for passage flow and the standard k-e model for internal cooling agreed best with measurement data. The relative error of vane dimensionless temperature was less than 3%. The variations of entropy generation with different internal cooling inlet velocities and temperatures indicate that reducing entropy generation was contradictory with enhancing heat transfer performance. This study, providing a reliable computing tool and a comprehensive performance parameter, has an important application value for the design of internally cooled gas turbine blades.


Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n

To improve gas turbine performance, the operating temperature has been increased continuously. However, the heat transferred to the turbine blade is substantially increased as the turbine inlet temperature is increased. Cooling methods are therefore needed for the turbine blades to ensure a long durability and safe operation. The blade tip region is exposed to the hot gas flow and is difficult to cool. A common way to cool the tip is to use serpentine passages with 180-deg turn under the blade tip-cap taking advantage of the three-dimensional turning effect and impingement. Increasing internal convective cooling is therefore required to increase the blade tip life. In this paper, augmented heat transfer of a blade tip with internal pin-fins has been investigated numerically using a conjugate heat transfer approach. The computational model consists of a two-pass channel with 180-deg turn and an array of pin-fins mounted on the tip-cap. The computational domain includes the fluid region and the solid pins as well as the solid tip regions. Turbulent convective heat transfer between the fluid and pins, and heat conduction within pins and tip are simultaneously computed. The inlet Reynolds numbers are ranging from 100,000 to 600,000. Details of the 3D fluid flow and heat transfer over the tip surface are presented. A comparison of the overall performance of the two models is presented. It is found that due to the combination of turning impingement and pin-fin cross flow, the heat transfer coefficient of the pin-finned tip is a factor of about 3.0 higher than that of a smooth tip. This augmentation is achieved at the cost of a pressure drop penalty of about 7%. With the conjugate heat transfer method, not only the simulated model is close to the experimental model, but also the distribution of the external tip heat transfer can be relevant for thermal design of turbine blade tips.


1994 ◽  
Vol 116 (2) ◽  
pp. 363-368 ◽  
Author(s):  
M. A. Habib ◽  
A. M. Mobarak ◽  
M. A. Sallak ◽  
E. A. Abdel Hadi ◽  
R. I. Affify

The phenomenon of flow separation in ducts with segmented baffles has many engineering applications, for example, shell-and-tube heat exchangers with segmented baffles, labyrinth shaft seals, laser curtain seals, air-cooled solar collectors, and internally cooled turbine blades. In the present work, an experimental investigation has been done to study the characteristics of the turbulent flow and heat transfer inside the periodic cell formed between segmented baffles staggered in a rectangular duct. In particular, flow field, pressure loss, and local and average heat transfer coefficients were obtained. The experimental runs were carried out for different values of Reynolds numbers and baffle heights (window cuts) at uniform wall heat flux condition along the top and bottom walls. The results indicate that the pressure loss increases as the baffle height does, for a given flow rate. Also, the local and average heat transfer parameters increase with increasing Reynolds number and baffle height. However, the associated increase in the pressure loss was found to be much higher than the increase in the heat transfer coefficient.


Author(s):  
Murphy Leo O’Dea ◽  
Laila Guessous

Current large-scale wind turbine installations are sited using layouts based on site topology, real estate costs and restrictions, and turbine power output. Existing optimization programs attempt to site multiple turbines based on simple geometric turbine wake models, which typically overestimate individual turbine output. In addition, advanced Computational Fluid Dynamics (CFD) modeling of individual turbine wake fields have revealed complex flow patterns and “wake meandering” which have not been taken into account in current optimization and flow field models. CFD models of entire turbine fields have had limited application because of the enormous compute resources required; limitations of the simplified turbine models used which do not provide high resolution results in the wake field; and the lack of efforts to adapt the results of complex CFD output to analytical models which can be incorporated into wind turbine siting optimization routines. In this paper, we report on our efforts to simulate flow past wind turbines using a new adaptation of the Actuator Line (AL) method for turbine blade modeling. This method creates a geometric representation of each rotating turbine blade. Grid points in the CFD flow field are selected within the outline of the blades and near downstream planes, and the aerodynamic forces are calculated using traditional blade element equations. The forces are distributed using an automated routine which dynamically determines the application area based on the number of applied grid points at each time step. Turbine blades are rotated in time with progressing CFD field calculations. This method distributes blade forces without using a geometric distribution function used in other recent research. Blade forces are then input as body forces into the Navier Stokes equations in the host CFD program. A Smagorisnky LES turbulence model is employed to model turbulent effects. To improve accuracy and reduce computing power requirements, the advanced parallel CFD code, NEK5000, is used in this study. FORTRAN subroutines are written to generate the actuator line and blade geometry, and to calculate the blade lift and drag forces. These subroutines are then linked to the solver source code and compiled. Details of the actuator line setup and calculations, LES turbulence model, CFD flow simulation setup, and results from current turbine runs will be presented. Current results are consistent with published research. A roadmap to ongoing development will also be discussed.


Author(s):  
Ilhan Gorgulu ◽  
Baris Gumusel ◽  
I. Sinan Akmandor

There are different characters of air flow in a conventional gas turbine blade cooling channel. These flow characters; including high streamline curvature caused from 180 degree bends, sequential flow separations caused from rib turbulators and pin-fin structures are analyzed separately with available commercial software for different turbulence models and validated against reliable experimental data from open literature. Also coupled conjugate heat transfer analyses on NASA C3X vane, which has only radial holes through blade span for cooling, are conducted with the same turbulence models. The accuracy information gathered from all these analyses; each interested with a single character of air and coupled conjugate heat transfer are put together and applied to a conjugate numerical analysis of internally cooled (VKI) LS-89 turbine blade. Internal cooling scheme which is applied to (VKI) LS-89 turbine blade encompassed the aforementioned flow characters and analyses are performed under realistic conditions. Because of the high temperature values occurring at realistic conditions, thermal conductivity and specific heat capacity of air and metal (Inconel 718) are modeled as temperature dependent material properties instead of using constant values. Conducted research revealed that 4 eqn. V2-f turbulence model gives similar results compared to the 2 eqn. Realizable k-e, k-w SST turbulence models for 180 degree bend and rib turbulator cases. However, at NASA C3X vane analyses V2-f turbulence model results are far more accurate than other two turbulence models in the manner of heat transfer coefficient and surface temperature distribution.


Author(s):  
Anders Jerhamre ◽  
Lars-Erik Eriksson

In rotating cavities the driving temperature difference for heat transfer is not easy to define or estimate. Traditionally, some reference temperature, here called bulk temperature, is used. This bulk temperature is closely connected to the heat transfer coefficient. In order to determine these characteristics, the assumption that the wall heat flux is linearly proportional to the temperature difference between wall and inlet air, is used. The slope is equal to the heat transfer coefficient and the x-intercept gives the difference between bulk temperature and inlet temperature. The validity of this assumption is thoroughly investigated by solving the Reynolds averaged Navier-Stokes equations for compressible, axisymmetric flow with a low Reynolds number k-ϵ-model. Rotational and buoyancy effects, which may introduce a non-linear relationship and also affect the local bulk temperature, are all taken into account in the CFD model. Three different cases were investigated: one simple corotating disk cavity; one simple rotor-stator cavity, and finally one real engine application cavity. The rotational Reynolds numbers, mass flow rates and temperature differences were varied. Results indicate that the Linear assumption is valid for a range of wall temperatures but not for regions where the local wall temperature affects the flow field, e.g. in corners. Furthermore, when the flow field undergoes a drastic change, new heat transfer characteristics must be determined, or be used with care. Since the heat transfer coefficient and bulk temperature are uniquely determined by the flow field, and not by the local wall temperature, it is not necessary to make a coupled, continuous calculation of the flow field and thermal distribution in the structure.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 830
Author(s):  
Viktor Vajc ◽  
Radek Šulc ◽  
Martin Dostál

Heat transfer coefficients were investigated for saturated nucleate pool boiling of binary mixtures of water and glycerin at atmospheric pressure in a wide range of concentrations and heat fluxes. Mixtures with water mass fractions from 100% to 40% were boiled on a horizontal flat copper surface at heat fluxes from about 25 up to 270kWm−2. Experiments were carried out by static and dynamic method of measurement. Results of the static method show that the impact of mixture effects on heat transfer coefficient cannot be neglected and ideal heat transfer coefficient has to be corrected for all investigated concentrations and heat fluxes. Experimental data are correlated with the empirical correlation α=0.59q0.714+0.130ωw with mean relative error of 6%. Taking mixture effects into account, data are also successfully correlated with the combination of Stephan and Abdelsalam (1980) and Schlünder (1982) correlations with mean relative error of about 15%. Recommended coefficients of Schlünder correlation C0=1 and βL=2×10−4ms−1 were found to be acceptable for all investigated mixtures. The dynamic method was developed for fast measurement of heat transfer coefficients at continuous change of composition of boiling mixture. The dynamic method was tested for water–glycerin mixtures with water mass fractions from 70% down to 35%. Results of the dynamic method were found to be comparable with the static method. For water–glycerin mixtures with higher water mass fractions, precise temperature measurements are needed.


Sign in / Sign up

Export Citation Format

Share Document