PEACES: A Program for the Economic Analysis of Combined Energy Systems

Author(s):  
Joseph Roy-Aikins

Industrial concerns, the world over, are embracing gas/steam turbine combined cycles and combined heat and power as means of meeting energy needs. The main reason is that the potential for energy savings is huge, due to the utilisation of waste heat as useful energy — the key to the excellent thermodynamic performance exhibited by combined energy systems. Excellent thermodynamic performance may not be matched by excellent economic performance, and in certain cases it may not be economical to choose a combined energy system over a mix of supply from conventional plants. The factors governing the economics of combined energy are numerous, though a few are decisive. In choosing a plant for a given duty, an economic assessment of life-cycle costs should be carried out for candidate plants, to arrive at the most economically viable investment proposal, among alternatives. With this in mind, a computer program PEACES was developed to aid the appraisal of energy investment proposals based on combined energy systems. The economic model on which the program was structured is described in this paper. A case study is carried out, where the software was used at arriving at the most economically viable solution for meeting the energy needs at an industrial site.

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3526
Author(s):  
Mafalda M. Miranda ◽  
Jasmin Raymond ◽  
Jonathan Willis-Richards ◽  
Chrystel Dezayes

Deep geothermal energy sources harvested by circulating fluids in engineered geothermal energy systems can be a solution for diesel-based northern Canadian communities. However, poor knowledge of relevant geology and thermo-hydro-mechanical data introduces significant uncertainty in numerical simulations. Here, a first-order assessment was undertaken following a “what-if” approach to help design an engineered geothermal energy system for each of the uncertain scenarios. Each possibility meets the thermal energy needs of the community, keeping the water losses, the reservoir flow impedance and the thermal drawdown within predefined targets. Additionally, the levelized cost of energy was evaluated using the Monte Carlo method to deal with the uncertainty of the inputs and assess their influence on the output response. Hydraulically stimulated geothermal reservoirs of potential commercial interest were simulated in this work. In fact, the probability of providing heating energy at a lower cost than the business-as-usual scenario with oil furnaces ranges between 8 and 92%. Although the results of this work are speculative and subject to uncertainty, geothermal energy seems a potentially viable alternative solution to help in the energy transition of remote northern communities.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3640
Author(s):  
Davide Borelli ◽  
Francesco Devia ◽  
Corrado Schenone ◽  
Federico Silenzi ◽  
Luca A. Tagliafico

Liquefied Natural Gas (LNG) is a crucial resource to reduce the environmental impact of fossil-fueled vehicles, especially with regards to maritime transport, where LNG is increasingly used for ship bunkering. The present paper gives insights on how the installation of LNG tanks inside harbors can be capitalized to increase the energy efficiency of port cities and reduce GHG emissions. To this purpose, a novel integrated energy system is introduced. The Boil Off Gas (BOG) from LNG tanks is exploited in a combined plant, where heat and power are produced by a regenerated gas turbine cycle; at the same time, cold exergy from LNG regasification contributes to an increase in the efficiency of a vapor compression refrigeration cycle. In the paper, the integrated energy system is simulated by means of dynamic modeling under daily variable working conditions. Results confirm that the model is stable and able to determine the time behavior of the integrated plant. Energy saving is evaluated, and daily trends of key thermophysical parameters are reported and discussed. The analysis of thermal recovering from the flue gases shows that it is possible to recover a large energy share from the turbine exhausts. Hence, the system can generate electricity for port cold ironing and, through a secondary brine loop, cold exergy for a refrigeration plant. Overall, the proposed solution allows primary energy savings up to 22% when compared with equivalent standard technologies with the same final user needs. The exploitation of an LNG regasification process through smart integration of energy systems and implementation of efficient energy grids can contribute to greener energy management in harbors.


Author(s):  
Fabrizio Reale ◽  
Vincenzo Iannotta ◽  
Raffaele Tuccillo

The primary need of reducing pollutant and greenhouse gas emissions has led to new energy scenarios. The interest of research community is mainly focused on the development of energy systems based on renewable resources and energy storage systems and smart energy grids. In the latter case small scale energy systems can become of interest as nodes of distributed energy systems. In this context micro gas turbines (MGT) can play a key role thanks to their flexibility and a strategy to increase their overall efficiency is to integrate gas turbines with a bottoming cycle. In this paper the authors analyze the possibility to integrate a MGT with a super critical CO2 Brayton cycle turbine (sCO2 GT) as a bottoming cycle (BC). A 0D thermodynamic analysis is used to highlight opportunities and critical aspects also by a comparison with another integrated energy system in which the waste heat recovery (WHR) is obtained by the adoption of an organic Rankine cycle (ORC). While ORC is widely used in case of middle and low temperature of the heat source, s-CO2 BC is a new method in this field of application. One of the aim of the analysis is to verify if this choice can be comparable with ORC for this operative range, with a medium-low value of exhaust gases and very small power values. The studied MGT is a Turbec T100P.


1988 ◽  
Vol 12 (3) ◽  
pp. 153-157
Author(s):  
JOHN W. CHINNECK

The energy systems in large industrial plants are often very complex involving hundreds of items of equipment such as furnaces, turbines, boilers, generators, etc., and numerous energy forms such as oil, natural gas, steam, electricity and so on. It is usually not obvious how to operate the system to minimize energy consumption, thereby minimizing fuel expenditures. Computer models can be effective tools for the plant manager in tackling this problem. This paper presents the results of the application of a new modelling procedure to the energy system in an existing Canadian petrochemicals plant. The new procedure identified an estimated $600,000 per annum in additional energy savings over other modelling techniques that had been applied to the plant. The procedure includes second-law measures in a convenient and easily-applied form.


Author(s):  
Daniel Kalús ◽  
Zuzana Straková ◽  
Matej Kubica

A qualitatively new dimension has been introduced to the issue of building structures for energy-efficient buildings by the system of Active Thermal Insulation (ATI), which is already applied in the construction of such buildings. ATI are embedded pipe systems in the envelope structures of buildings, into which we supply a heat-carrying medium with adjusted temperature, so this constitutes a combined building-energy system. This introduces the concept of an internal energy source understood as an energy system integrated into the zone between the static part and the thermal insulation part of the building structure envelope. Under certain conditions, the ATI can serve as a heat recuperator or as an energy collector for a heat pump application. ATI consists of pipe systems embedded in building structures, in which the medium circulates heated by energy from any heat source. The function of the system is to reduce or eliminate heat losses through non-transparent structures in the winter and at the same time to reduce or eliminate heat gains in the summer. It is especially recommended to apply heat sources using renewable energy sources due to the required low temperatures of the heating medium and thus shorten the heating period in the building. Also recommended is to apply ATI for the use of waste heat. Buildings with a given system show low energy consumption and therefore meet the requirements of Directive no. 2018/844/EU, according to which, from 01.01.2021, all new buildings for housing and civic amenities should have energy needs close to zero.


Consumption of fossil fuel and its effect on the environment has become a major universal problem. It is therefore necessary to use renewable energy resources (RES) such as solar, wind, etc. to decrease dependency on conventional energy resources. Currently, solar rooftop PV hybrid energy systems are becoming popular to overcome with the disadvantages of conventional energy sources. This paper presents a simulation-based strategy with the help of HOMER software to control the optimum utilization of renewable hybrid energy system for private buildings where it helps to maximize the building’s renewable power ratio and minimizing complete net current costs and CO2 emissions so that it’s a viable solution to address to the power shortage and Greenhouse gas emissions. Finally, manual calculations measured with net-meter are being validated with HOMER software and the results are more accurate with a variation of 1%


2019 ◽  
Vol 13 (1) ◽  
pp. 129-144 ◽  
Author(s):  
Carolina Koronen ◽  
Max Åhman ◽  
Lars J Nilsson

AbstractEnd-use efficiency, demand response and coupling of different energy vectors are important aspects of future renewable energy systems. Growth in the number of data centres is leading to an increase in electricity demand and the emergence of a new electricity-intensive industry. Studies on data centres and energy use have so far focused mainly on energy efficiency. This paper contributes with an assessment of the potential for energy system integration of data centres via demand response and waste heat utilization, and with a review of EU policies relevant to this. Waste heat utilization is mainly an option for data centres that are close to district heating systems. Flexible electricity demand can be achieved through temporal and spatial scheduling of data centre operations. This could provide more than 10 GW of demand response in the European electricity system in 2030. Most data centres also have auxiliary power systems employing batteries and stand-by diesel generators, which could potentially be used in power system balancing. These potentials have received little attention so far and have not yet been considered in policies concerning energy or data centres. Policies are needed to capture the potential societal benefits of energy system integration of data centres. In the EU, such policies are in their nascent phase and mainly focused on energy efficiency through the voluntary Code of Conduct and criteria under the EU Ecodesign Directive. Some research and development in the field of energy efficiency and integration is also supported through the EU Horizon 2020 programme. Our analysis shows that there is considerable potential for demand response and energy system integration. This motivates greater efforts in developing future policies, policy coordination, and changes in regulation, taxation and electricity market design.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2279 ◽  
Author(s):  
Umberto Berardi ◽  
Elisa Tomassoni ◽  
Khaled Khaled

The current energy inefficiencies in relocatable temporary camps of the Armed Force troops create logistic challenges associated with fuel supply. The energy needs of these camps are primarily satisfied by diesel engine generators, which imply that a significant amount of fuel needs to be continuously provided to these camps, often built in remote areas. This paper presents an alternative solution, named Smart Hybrid Energy System (SHES), aiming towards significantly reducing the amount of fuel needed and minimizing transportation logistics while meeting camp energy demands. The SHES combines the existing diesel generators with solar power generation, energy storage, and waste heat recovery technologies, all connected to a microgrid, ensuring uninterrupted electricity and hot water supplies. All components are controlled by an energy management system that prioritizes output and switches between different power generators, ensuring operation at optimum efficiencies. The SHES components have been selected to be easily transportable in standard shipping 20 ft containers. The modularity of the solution, scalable from the base camp for 150 people, is designed according to available on-site renewable sources, allowing for energy optimization of different camp sizes in different climates.


Author(s):  
F Tillig ◽  
JW Ringsberg ◽  
W Mao ◽  
B Ramne

There is an environmentally and economically motivated need to reduce the fuel consumption and air emissions of ships. To achieve a reduction in energy consumption, the energy flow in the entire energy system of a ship must be analysed in both the component, or subsystem, level as well as in a holistic way to capture the interactions between the components. Of the currently available energy consumption monitoring and prediction methods or models, no single model or method can be used to assess the energy efficiency of an arbitrary vessel in both the early design phase and during operation. This study presents a new generic ship energy systems model that can be used for this purpose. This new model has two parts: one for the assessment of a ship’s energy consumption based on an ordinary static power prediction and one for advanced operational analysis, considering hydrodynamic and machinery systems effects. A Panamax tanker vessel was used as the case study vessel to prove the versatility of the model for five example simulations for the design and operation of ships. The examples include variations of the main dimensions, propeller design, engine layout and the operational profile on a North Atlantic route. From the results, different areas with a potential for energy savings were identified.


2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Sign in / Sign up

Export Citation Format

Share Document