Remote Monitoring and Diagnostics System for GE Heavy Duty Gas Turbines

Author(s):  
Dincer Ozgur ◽  
Arkalgud N. Lakshminarasimha ◽  
Richard Rucigay ◽  
Mahesh Morjaria ◽  
S. Sanborn

The paper describes GE’s Remote Monitoring and Diagnostic (RM&D) system, its operation, its unique features and our experiences in applying it to improve performance and availability of heavy-duty gas turbine fleet worldwide. A key success factor of the system is that it relies upon an effective combination of advanced computer automation complemented by technical experts who have an in-depth understanding of the power generation equipment to achieve its objectives. The RM&D system enables GE experts to remotely access operational data of power plants operating world wide, and exercise sophisticated algorithms, which can detect abnormal operating conditions. The experts, with ready access to the design information, operation and maintenance information and in-depth knowledge about the turbines, identify and track operational signatures, which may indicate potential problems. The real key is to be able to distinguish false indications from the ones that are true early indicators of potential problems. In this paper we describe a design approach for developing a successful RM&D system. We illustrate our approach through various examples of performance, vibration and combustion diagnostics scenarios.

Author(s):  
O. R. Schmoch ◽  
B. Deblon

The peripheral speeds of the rotors of large heavy-duty gas turbines have reached levels which place extremely high demands on material strength properties. The particular requirements of gas turbine rotors, as a result of the cycle, operating conditions and the ensuing overall concepts, have led different gas turbine manufacturers to produce special structural designs to resolve these problems. In this connection, a report is given here on a gas turbine rotor consisting of separate discs which are held together by a center bolt and mutually centered by radial serrations in a manner permitting expansion and contraction in response to temperature changges. In particular, the experience gained in the manufacture, operation and servicing are discussed.


Author(s):  
Simone Cubeda ◽  
Tommaso Bacci ◽  
Lorenzo Mazzei ◽  
Simone Salvadori ◽  
Bruno Facchini ◽  
...  

Abstract Modern industrial gas turbines typically employ lean-premix combustors, which can limit pollutant emissions thanks to premixed flames, while sustaining high turbine inlet temperatures that increase the single-cycle thermal efficiency. As such, gas-turbine first stage nozzles can be characterized by a highly-swirled and temperature-distorted inlet flow field. However, due to several sources of uncertainty during the design phase, wide safety margins are commonly adopted, having a direct impact on engine performance and efficiency. Therefore, aiming at increasing the knowledge on combustor-turbine interaction and improving standard design practices, a non-reactive test rig composed of real hardware was assembled at the University of Florence, Italy. The rig, accommodating three lean-premix swirlers within a combustion chamber and two first stage film-cooled nozzles of a Baker Hughes heavy-duty gas turbine, is operated in similitude conditions. The rig has been designed to reproduce the real engine periodic flow field on the central vane channel, also allowing for measurements far enough from the lateral walls. The periodicity condition on the central sector was achieved by the proper design of both the angular profile and pitch value of the tailboards with respect to the vanes, which was carried out in a preliminary phase via a Design of Experiments procedure. In addition, circular ducts needed to be installed at the injectors outlet section to preserve the non-reactive swirling flow down to the nozzles’ inlet plane. The combustor-turbine interface section has been experimentally characterized in nominal operating conditions as per the temperature, velocity and pressure fields by means of a five-hole pressure probe provided with a thermocouple, installed on an automatic traverse system. To study the evolution of the combustor outlet flow through the vanes and its interaction with the film-cooling flow, such measurements have been replicated also downstream of the vanes’ trailing edge. This work allowed for designing and providing preliminary data on a combustor simulator capable of equipping and testing real hardware film-cooled nozzles of a heavy-duty gas turbine. Ultimately, the activity sets the basis for an extensive test campaign aimed at characterizing the metal temperature, film effectiveness and heat transfer coefficient at realistic aerothermal conditions. In addition, and by leveraging experimental data, this activity paves the way for a detailed validation of current design practices as well as more advanced numerical methodologies such as Scale-Adaptive Simulations of the integrated combustor-turbine domain.


Author(s):  
Joel M. Haynes ◽  
Daniel Micka ◽  
Ben Hojnacki ◽  
Craig Russell ◽  
John Lipinski ◽  
...  

The application of the trapped vortex combustor (TVC) concept to heavy-duty gas turbine conditions has been explored. Combustor stability, lean blow out, and emission performance requirements limit design options for conventional lean premixed combustors. The TVC concept has demonstrated reduced emissions and high turndown with liquid fuels and could overcome existing lean premixed performance constraints as well. The present study examines premixed injection of natural gas into the TVC at heavy-duty gas turbine conditions. The emission performance is measured over a range of operating conditions. The combustor turndown and dynamics performance are also presented. To forecast the performance potential of the TVC combustor a chemical reactor network model was developed. The model was anchored with experimental data and implemented in the prediction of TVC combustor emissions and turndown performance. The reactor model confirms that NOx reduction greater than 60% is possible using a trapped vortex combustor (TVC).


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Daniele Pampaloni ◽  
Pier Carlo Nassini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Matteo Cerutti

Abstract A numerical investigation of pollutant emissions of a novel dry low-emissions burner for heavy-duty gas turbine applications is presented. The objective of this work is to develop and assess a robust and cost-efficient numerical setup for the prediction of NOx and CO emissions in industrial gas turbines and to investigate the pollutant formation mechanisms, thus supporting the design process of a novel low-emission burner. To this end, a comparison against experimental data, from a recent experimental campaign performed by BHGE in cooperation with University of Florence, has been exploited. In the first part of this work, a Reynolds-averaged Navier–Stokes (RANS) approach on both a simplified geometry and the complete domain is adopted to characterize the global flame behavior and validate the numerical setup. Then, unsteady simulations exploiting the scale adaptive simulation (SAS) approach have been performed to assess the prediction improvements that can be obtained with the unsteady modeling of the flame. For all simulations, the flamelet generated manifold (FGM) model has been used, allowing the reliable and cost-efficient application of detailed chemistry mechanisms in computational fluid dynamics (CFD) simulation. However, FGM typically faces issues predicting flame emissions, such as NOx and CO, due to the wide range of time scales involved, from turbulent mixing to pollutant species oxidation. Specific models are typically used to predict NOx emissions, starting from the converged flow-field and introducing additional transport equations. Also CO prediction, especially at part-load operating conditions could be an issue for flamelet-based model: in fact, as the load decreases and the extinction limit approaches, a superequilibrium CO concentration, which cannot be accurately predicted by FGM, appears in the exhaust gases. To overcome this issue, a specific CO-burn-out model, following the original idea proposed by Klarmann, has been implemented in ANSYS fluent. The model allows to decouple the effective CO oxidation term from the one computed by FGM, defining a postflame zone where the source term of CO is treated following the Arrhenius formulation. In order to support the design process, an indepth CFD investigation has been carried out, evaluating the impact of an alternative burner geometrical configuration on stability and emissions and providing detailed information about the main regions and mechanisms of pollutants production. The outcomes support the analysis of experimental results, allowing an indepth investigation of the complex flow-field and the flame-related quantities, which have not been measured during the tests.


Author(s):  
Daniele Pampaloni ◽  
Pier Carlo Nassini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Matteo Cerutti

Abstract A numerical investigation of pollutant emissions of a novel dry low-emissions burner for heavy-duty gas turbine applications is presented. The objective of the work is to develop and assess a robust and cost-efficient numerical setup for the prediction of NOx and CO emissions in industrial gas turbines and to investigate the pollutant formation mechanisms, thus supporting the design process of a novel low-emission burner. To this end, a comparison against experimental data, from a recent experimental campaign performed by BHGE in cooperation with University of Florence, has been exploited. In the first part of this work, a RANS approach on both a simplified geometry and the complete domain is adopted to characterize the global flame behavior and validate the numerical setup. Then, unsteady simulations exploiting the Scale Adaptive Simulation (SAS) approach have been performed to assess the prediction improvements that can be obtained with the unsteady modelling of the flame. For all simulations, the Flamelet Generated Manifold (FGM) model has been used, allowing the reliable and cost-efficient application of detailed chemistry mechanisms in CFD simulation. However, FGM typically faces issues predicting flame emissions, such as NOx and CO, due to the wide range of time scales involved, from turbulent mixing to pollutant species oxidation. Specific models are typically used to predict NOx emissions, starting from the converged flow field and introducing additional transport equations. Also CO prediction, especially at part-load operating conditions could be an issue for flamelet-based model: in fact, as the load decreases and the extinction limit approaches, a super-equilibrium CO concentration, which cannot be accurately predicted by FGM, appears in the exhaust gases. To overcome this issue, a specific CO burn-out model, following the original idea proposed by Klarmann, has been implemented in ANSYS Fluent. The model allows to decouple the effective CO oxidation term from the one computed by FGM, defining a post-flame zone where the source term of CO is treated following the Arrhenius formulation. In order to support the design process, an in-depth CFD investigation has been carried out, evaluating the impact of an alternative burner geometrical configuration on stability and emissions and providing detailed information about the main regions and mechanisms of pollutants production. The outcomes support the analysis of experimental results, allowing an in-depth investigation of the complex flow-field and the flame-related quantities, which have not been measured during the tests.


Author(s):  
G. L. Lapini ◽  
M. Zippo ◽  
G. Tirone

The idea of measuring the electrostatic charge associated with the debris contained in the exhaust gases of a gas turbine (sometimes named EDMS, Engine Debris Monitoring System, or EEMS, Electrostatic Engine Monitoring System) has been demonstrated by several authors as an interesting diagnostic tool for the early warning of possible internal distresses (rubs, coating wear, hot spots in combustors, improper combustion, etc.) especially for jet engines or aeroderivative gas turbines. While potentially applicable to machines of larger size, the possibility of transferring this monitoring technology to heavy-duty gas turbines, which have exhaust ducts much bigger in size and different operating conditions, should be demonstrated. The authors present a synthesis of their experience and of the most significant data collected during a demonstration program performed on behalf of ENEL, the main Italian electric utility. The purpose of this program was to test this concept in real operating conditions on large turbines, and hence to evaluate the influence of the operating conditions on the system response and to assess its sensitivity to possible distresses. A good amount of testing has been performed, during this program, both on a full scale combustion rig, and on two machines rated at about 120 MW, during their normal and purposely perturbed operating conditions in a power plant. The authors, on the basis of the encouraging results obtained to date, comment on the work still required to bring this technology to full maturity.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


2021 ◽  
Vol 13 (24) ◽  
pp. 13678
Author(s):  
Anton Petrochenkov ◽  
Aleksandr Romodin ◽  
Vladimir Kazantsev ◽  
Aleksey Sal’nikov ◽  
Sergey Bochkarev ◽  
...  

The purpose of the study is to analyze the prospects for the development of loading methods for gas turbines as well as to develop a mathematical model that adequately describes the real operating conditions of the loading system at various loads and rotation speeds. A comparative analysis of the most common methods and technical means of loading the shafts of a free turbine at gas turbine plants intended for operation as part of gas pumping units is presented. Based on the results of the analysis, the expediency of using the loading model “Free Power Turbine Rotor–Hydraulic Brake” as a load simulation is shown. Recommendations for the creation of an automation system for the load testing of power plants have been developed. Mathematical models and Hardware-in-the-Loop simulation models of power plants have been developed and tested. One of the most important factors that predetermine the effectiveness of the loading principle is the possibility of software implementation of the loading means using software control systems that provide the specified loading parameters of the gas turbine.


Author(s):  
Lorenzo Cozzi ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Savino Depalo ◽  
Pio Astrua ◽  
...  

Abstract The overall fraction of the power produced by renewable sources in the energy market has significantly increased in recent years. The power output of most of these clean sources is intrinsically variable. At present day and most likely in the upcoming future, due to the lack of inexpensive and reliable large energy storage systems, conventional power plants burning fossil fuels will still be part of the energy horizon. In particular, power generators able to promptly support the grid stability, such as gas turbines, will retain a strategic role. This new energy scenario is pushing gas turbine producers to improve the flexibility of their turbomachines, increasing the need for reliable numerical tools adopted to design and validate the new products also in operating conditions far from the nominal one. Especially when dealing with axial compressors, i.e. machines experiencing intense adverse pressure gradients, complex flow structures and severe secondary flows, CFD modelling of offdesign operation can be a real challenge. In this work, a state-of-the art CFD framework for RANS analysis of axial compressors is presented. The various aspects involved in the whole setup are discussed, including boundary conditions, meshing strategies, mixing planes modelling, tip clearance treatment, shroud leakages and turbulence modelling. Some experiences about the choice of these aspects are provided, derived from a long-date practice on this kind of turbomachines. Numerical results are reported for different full-scale compressors of the Ansaldo Energia fleet, covering a wide range of operating conditions. Furthermore, details about the capability of the setup to predict compressor performance and surge-margin have been added to the work. In particular, the setup surge-margin prediction has been evaluated in an operating condition in which the turbomachine experiences experimental stall. Finally, thanks to several on-field data available at different corrected speeds for operating conditions ranging from minimum to full load, a comprehensive validation of the presented numerical framework is also included in the paper.


Sign in / Sign up

Export Citation Format

Share Document