A State-of-the-Art CFD Setup for Axial Compressors: Details and Validation

Author(s):  
Lorenzo Cozzi ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Savino Depalo ◽  
Pio Astrua ◽  
...  

Abstract The overall fraction of the power produced by renewable sources in the energy market has significantly increased in recent years. The power output of most of these clean sources is intrinsically variable. At present day and most likely in the upcoming future, due to the lack of inexpensive and reliable large energy storage systems, conventional power plants burning fossil fuels will still be part of the energy horizon. In particular, power generators able to promptly support the grid stability, such as gas turbines, will retain a strategic role. This new energy scenario is pushing gas turbine producers to improve the flexibility of their turbomachines, increasing the need for reliable numerical tools adopted to design and validate the new products also in operating conditions far from the nominal one. Especially when dealing with axial compressors, i.e. machines experiencing intense adverse pressure gradients, complex flow structures and severe secondary flows, CFD modelling of offdesign operation can be a real challenge. In this work, a state-of-the art CFD framework for RANS analysis of axial compressors is presented. The various aspects involved in the whole setup are discussed, including boundary conditions, meshing strategies, mixing planes modelling, tip clearance treatment, shroud leakages and turbulence modelling. Some experiences about the choice of these aspects are provided, derived from a long-date practice on this kind of turbomachines. Numerical results are reported for different full-scale compressors of the Ansaldo Energia fleet, covering a wide range of operating conditions. Furthermore, details about the capability of the setup to predict compressor performance and surge-margin have been added to the work. In particular, the setup surge-margin prediction has been evaluated in an operating condition in which the turbomachine experiences experimental stall. Finally, thanks to several on-field data available at different corrected speeds for operating conditions ranging from minimum to full load, a comprehensive validation of the presented numerical framework is also included in the paper.

Author(s):  
Lorenzo Cozzi ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Andrea Schneider ◽  
Pio Astrua

Abstract The axial compressors of power-generation gas turbines have a high stage count, blades with low aspect ratios and relatively large clearances in the rear section. These features promote the development of strong secondary flows. An important outcome deriving from the convection of intense secondary flows is the enhanced span-wise transport of fluid properties mainly involving the rear stages, generally referred to as “radial mixing”. An incorrect prediction of this key phenomenon may result in inaccurate performance evaluation and could mislead the designers during the compressor design phase. As shown in a previous work, in the rear stages of an axial compressor the stream-wise vorticity associated with tip clearance flows is one of the main drivers of the overall span-wise transport phenomenon. Limiting it by circumferentially averaging the flow at row interfaces is the reason why a steady-state analysis strongly under-predicts radial mixing. To properly forecast the span-wise transport within the flow-path, an unsteady analysis should be adopted. However, due to the high blade count, this approach has a computational cost not yet suitable for industrial purposes. Currently, only the steady-state full-compressor simulation can fit in a lean industrial design chain and any model upgrade improving its radial mixing prediction would be highly beneficial for the daily design practice. To attain some progresses in RANS model, its inherent lack of convection of stream-wise vorticity must be addressed. This can be done by acting on another mixing driver, able to provide the same outcome, that is turbulent diffusion. In particular, by enhancing turbulent viscosity one can promote span-wise diffusion, thus improving the radial mixing prediction of the steady approach. In this paper, this strategy to update the RANS model and its application in simulations on a compressor of the Ansaldo Energia fleet is presented, together with the model tuning that has been performed using the results of unsteady simulations as the target.


1948 ◽  
Vol 159 (1) ◽  
pp. 255-268 ◽  
Author(s):  
A. D. S. Carter

It has long been known that the energy losses occurring in an axial compressor or turbine cannot be fully accounted for by the skin-friction losses on the blades and annulus walls. The difference, usually termed secondary loss, is attributed to miscellaneous secondary flows which take place in the blade row. These flows both cause losses in themselves and modify the operating conditions of the individual blade sections, to the detriment of the overall performance. This lecture analyses the three-dimensional flow in axial compressors and turbines, so that, by appreciation of the factors involved, possible methods of improving the performance can readily be investigated. The origin of secondary flow is first examined for the simple case of a straight cascade. The physical nature of the flow, and theories which enable quantitative estimates to be made, are discussed at some length. Following this, the three-dimensional flow in an annulus with a stationary blade row is examined, and, among other things, the influence of radial equilibrium on the flow pattern is noted. All physical restrictions are then removed, and the major factors governing the three-dimensional flow in an actual machine are investigated as far as is possible with existing information, particular attention being paid to the influence of a non-uniform velocity profile, tip clearance, shrouding, and boundary layer displacement. Finally the various empirical factors used in design are discussed, and the relationships between them established.


Author(s):  
Lorenzo Cozzi ◽  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Pio Astrua ◽  
...  

Multistage axial compressors have always been a great challenge for designers since the flow within these kind of machines, subjected to severe diffusion, is usually characterized by complex and widely developed 3D structures, especially next to the endwalls. The development of reliable numerical tools capable of providing an accurate prediction of the overall machine performance is one of the main research focus areas in the multistage axial compressor field. This paper is intended to present the strategy used to run numerical simulations on compressors achieved by the collaboration between the University of Florence and Ansaldo Energia. All peculiar aspects of the numerical setup are introduced, such as rotor/stator tip clearance modelling, simplified shroud leakage model, gas and turbulence models. Special attention is payed to the mixing planes adopted for steady-state computations because this is a crucial aspect of modern heavy-duty transonic multistage axial compressors. In fact, these machines are characterized by small inter-row axial gaps and transonic flow in front stages, which both may affect non-reflectiveness and fluxes conservation across mixing planes. Moreover, the high stage count may lead to conservation issues of the main flow properties form inlet to outlet boundaries. Finally, the likely occurrence of partspan flow reversal in the endwall regions affects the robustness of non-reflecting mixing plane models. The numerical setup has been validated on an existing machine produced and experimentally tested by Ansaldo Energia. In order to evaluate the impact on performance prediction of the mixing planes introduced in the steady-state computation, un-steady simulations of the whole compressor have been performed at different operating conditions. These calculations have been carried out both at the compressor design point and close to the surge-line to evaluate the effect of rotor/stator interaction along the compressor working line.


Author(s):  
R. Friso ◽  
N. Casari ◽  
M. Pinelli ◽  
A. Suman ◽  
F. Montomoli

Abstract Gas turbines (GT) are often forced to operate in harsh environmental conditions. Therefore, the presence of particles in their flow-path is expected. With this regard, deposition is a problem that severely affects gas turbine operation. Components’ lifetime and performance can dramatically vary as a consequence of this phenomenon. Unfortunately, the operating conditions of the machine can vary in a wide range, and they cannot be treated as deterministic. Their stochastic variations greatly affect the forecasting of life and performance of the components. In this work, the main parameters considered affected by the uncertainty are the circumferential hot core location and the turbulence level at the inlet of the domain. A stochastic analysis is used to predict the degradation of a high-pressure-turbine (HPT) nozzle due to particulate ingestion. The GT’s component analyzed as a reference is the HPT nozzle of the Energy-Efficient Engine (E3). The uncertainty quantification technique used is the probabilistic collocation method (PCM). This work shows the impact of the operating conditions uncertainties on the performance and lifetime reduction due to deposition. Sobol indices are used to identify the most important parameter and its contribution to life. The present analysis enables to build confidence intervals on the deposit profile and on the residual creep-life of the vane.


2021 ◽  
Vol 13 (24) ◽  
pp. 13678
Author(s):  
Anton Petrochenkov ◽  
Aleksandr Romodin ◽  
Vladimir Kazantsev ◽  
Aleksey Sal’nikov ◽  
Sergey Bochkarev ◽  
...  

The purpose of the study is to analyze the prospects for the development of loading methods for gas turbines as well as to develop a mathematical model that adequately describes the real operating conditions of the loading system at various loads and rotation speeds. A comparative analysis of the most common methods and technical means of loading the shafts of a free turbine at gas turbine plants intended for operation as part of gas pumping units is presented. Based on the results of the analysis, the expediency of using the loading model “Free Power Turbine Rotor–Hydraulic Brake” as a load simulation is shown. Recommendations for the creation of an automation system for the load testing of power plants have been developed. Mathematical models and Hardware-in-the-Loop simulation models of power plants have been developed and tested. One of the most important factors that predetermine the effectiveness of the loading principle is the possibility of software implementation of the loading means using software control systems that provide the specified loading parameters of the gas turbine.


Author(s):  
Andrew Moffat ◽  
Richard Green ◽  
Calum Ferguson ◽  
Brent Scaletta

Abstract There is a drive towards a broader range of fuels in industrial gas turbines, with higher levels of sulphur and potentially hydrogen. Due to these harsher environments, there is also a drive for corrosion resistant alloys and coatings. A number of key corrosion resistant superalloys, which are being employed to cope with these evolving conditions, exhibit primary creep. It is therefore imperative that fundamental material models, such as those for creep deformation, are developed to ensure they can accurately predict the material response to evolving operating conditions. The requirements for a creep model are complex. The model must be able to: predict forward creep deformation in regions dominated by primary loads (such as pressure); predict stress relaxation in regions dominated by secondary loads (such as differential thermal expansion); predict the effects of different creep hardening mechanisms. It is also clear that there is an interaction between fatigue and creep. With flexible operation, this interaction can be significant and should be catered for in lifing methods. A model that has the potential to account for the effect of plasticity on creep, and creep on plasticity is therefore desirable. In previous work the authors presented the concept for a backstress model to predict creep strain rates in superalloys. This model was fitted to a limited dataset at a single temperature. The approach was validated using simple creep-dwell tests at the same temperature. This paper expands on the previous work in several ways: 1) The creep model has been fitted over a wide range of temperatures. Including the effect of temperature in complex creep models presents a number of difficulties in model fitting and these are explored. 2) The model was fitted to constant load (forward creep) and constant strain (stress relaxation) tests since any creep model should be able to predict both forms of creep deformation. However, these are often considered separately due to the difficulty of fitting models to two different datasets. 3) The creep deformation model was validated on stress change tests to ensure the creep deformation response can cope with changes in response variables. 4) The approach was validated using creep-fatigue tests to show that the creep deformation model, in addition to our established fatigue models, can predict damage in materials under complex loading.


2021 ◽  
Author(s):  
Oguzhan Murat ◽  
Budimir Rosic ◽  
Koichi Tanimoto ◽  
Ryo Egami

Abstract Due to increase in the power generation from renewable sources, steam and gas turbines will be required to adapt for more flexible operations with frequent start-ups and shut-downs to provide load levelling capacity. During shut-down regimes, mixed convection takes place with natural convection dominance depending on the operating conditions in turbine cavities. Buoyant flows inside the turbine that are responsible for non-uniform cooling leading to thermal stresses and compromise clearances directly limits the operational flexibility. Computational fluid dynamics (CFD) tools are required to predict the flow field during these regimes since direct measurements are extremely difficult to conduct due to the harsh operating conditions. Natural convection with the presence of cross-flow -mixed convection has not been extensively studied to provide detailed measurements. Since the literature lacks of research on such flows with real engine representative operating conditions for CFD validation, the confidence in numerical predictions is rather inadequate. This paper presents a novel experimental facility that has been designed and commissioned to perform very accurate unsteady temperature and flow field measurements in a simplified turbine casing geometry. The facility is capable of reproducing a wide range of Richardson, Grashof and Reynolds numbers which are representative of engine realistic operating conditions. In addition, high fidelity, wall resolved LES with dynamic Smagorinsky subgrid scale model has been performed. The flow field as well as heat transfer characteristics have been accurately captured with LES. Lastly, inadequacy of RANS for mixed type of flows has been highlighted.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 291 ◽  
Author(s):  
Thijs A. Peters ◽  
Marit Stange ◽  
Rune Bredesen

We report on the effect of butane and butylene on hydrogen permeation through thin state-of-the-art Pd–Ag alloy membranes. A wide range of operating conditions, such as temperature (200–450 °C) and H2/butylene (or butane) ratio (0.5–3), on the flux-reducing tendency were investigated. In addition, the behavior of membrane performance during prolonged exposure to butylene was evaluated. In the presence of butane, the flux-reducing tendency was found to be limited up to the maximum temperature investigated, 450 °C. Compared to butane, the flux-reducing tendency in the presence of butylene was severe. At 400 °C and 20% butylene, the flux decreases by ~85% after 3 h of exposure but depends on temperature and the H2/butylene ratio. In terms of operating temperature, an optimal performance was found at 250–300 °C with respect to obtaining the highest absolute hydrogen flux in the presence of butylene. At lower temperatures, the competitive adsorption of butylene over hydrogen accounts for a large initial flux penalty.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 264 ◽  
Author(s):  
Hyoung-Ho Kim ◽  
Md Rakibuzzaman ◽  
Kyungwuk Kim ◽  
Sang-Ho Suh

The Kaplan turbine is an axial propeller-type turbine that can simultaneously control guide vanes and runner blades, thus allowing its application in a wide range of operations. Here, turbine tip clearance plays a crucial role in turbine design and operation as high tip clearance flow can lead to a change in the flow pattern, resulting in a loss of efficiency and finally the breakdown of hydro turbines. This research investigates tip clearance flow characteristics and undertakes a transient fast Fourier transform (FFT) analysis of a Kaplan turbine. In this study, the computational fluid dynamics method was used to investigate the Kaplan turbine performance with tip clearance gaps at different operating conditions. Numerical performance was verified with experimental results. In particular, a parametric study was carried out including the different geometrical parameters such as tip clearance between stationary and rotating chambers. In addition, an FFT analysis was performed by monitoring dynamic pressure fluctuation on the rotor. Here, increases in tip clearance were shown to occur with decreases in efficiency owing to unsteady flow. With this study’s focus on analyzing the flow of the tip clearance and its effect on turbine performance as well as hydraulic efficiency, it aims to improve the understanding on the flow field in a Kaplan turbine.


Author(s):  
Marek Dzida ◽  
Krzysztof Kosowski

In bibliography we can find many methods of determining pressure drop in the combustion chambers of gas turbines, but there is only very few data of experimental results. This article presents the experimental investigations of pressure drop in the combustion chamber over a wide range of part-load performances (from minimal power up to take-off power). Our research was carried out on an aircraft gas turbine of small output. The experimental results have proved that relative pressure drop changes with respect to fuel flow over the whole range of operating conditions. The results were then compared with theoretical methods.


Sign in / Sign up

Export Citation Format

Share Document