Effects of Tip Clearance on Hot Streak Migration in a High-Subsonic Single-Stage Turbine

Author(s):  
Daniel J. Dorney ◽  
Douglas L. Sondak

Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location, or clocking, of the first-stage vane airfoils can be used to minimize the adverse effects of the hot streaks due to the hot fluid mixing with the cooler fluid contained in the vane wake. In addition, the effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have been quantified. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine geometry operating in high subsonic flow to study the effects of tip clearance on hot streak migration. Baseline simulations were initially performed without hot streaks to compare with the experimental data. Two simulations were then performed with a superimposed combustor hot streak; in the first the tip clearance was set at the experimental value, while in the second the rotor was allowed to scrape along the outer case (i.e., the limit as the tip clearance goes to zero). The predicted results for the baseline simulations show good agreement with the available experimental data. The simulations with the hot streak indicate that the tip clearance increases the radial spreading of the hot fluid, and increases the integrated rotor surface temperature compared to the case without tip clearance.

2000 ◽  
Vol 122 (4) ◽  
pp. 613-620 ◽  
Author(s):  
Daniel J. Dorney ◽  
Douglas L. Sondak

Experimental data have shown that combustor temperature nonuniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location, or clocking, of the first-stage vane airfoils can be used to minimize the adverse effects of the hot streaks due to the hot fluid mixing with the cooler fluid contained in the vane wake. In addition, the effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have been quantified. In the present investigation, three-dimensional unsteady Navier–Stokes simulations have been performed for a single-stage high-pressure turbine geometry operating in high subsonic flow to study the effects of tip clearance on hot streak migration. Baseline simulations were initially performed without hot streaks to compare with the experimental data. Two simulations were then performed with a superimposed combustor hot streak; in the first the tip clearance was set at the experimental value, while in the second the rotor was allowed to scrape along the outer case (i.e., the limit as the tip clearance goes to zero). The predicted results for the baseline simulations show good agreement with the available experimental data. The simulations with the hot streak indicate that the tip clearance increases the radial spreading of the hot fluid, and increases the integrated rotor surface temperature compared to the case without tip clearance. [S0889-504X(00)02204-2]


Author(s):  
Daniel J. Dorney ◽  
Karen L. Gundy-Burlet

Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.


Author(s):  
Karen L. Gundy-Burlet ◽  
Daniel J. Dorney

Experimental data have shown that combustor temperature non-uniformities can lead to pressure side burning on first-stage turbine rotor blades. Although most modern turbines operate in an environment with significant heat transfer, the majority of hot streak experiments and simulations during the last decade have assumed adiabatic flow. This assumption can cause errors in the prediction of turbine cooling requirements. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a 1-1/2 stage high-pressure turbine geometry operating in subsonic flow. Combustor hot streaks and heat transfer effects at the airfoil surfaces were included in the simulations. The predicted aerodynamic (pressure) data shows close agreement with the available experimental data. The predicted heat flux results agree with experimental observations.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2346
Author(s):  
Tien-Dung Vuong ◽  
Kwang-Yong Kim

A casing treatment using inclined oblique slots (INOS) is proposed to improve the stability of the single-stage transonic axial compressor, NASA Stage 37, during operation. The slots are installed on the casing of the rotor blades. The aerodynamic performance was estimated using three-dimensional steady Reynolds-Averaged Navier-Stokes analysis. The results showed that the slots effectively increased the stall margin of the compressor with slight reductions in the pressure ratio and adiabatic efficiency. Three geometric parameters were tested in a parametric study. A single-objective optimization to maximize the stall margin was carried out using a Genetic Algorithm coupled with a surrogate model created by a radial basis neural network. The optimized design increased the stall margin by 37.1% compared to that of the smooth casing with little impacts on the efficiency and pressure ratio.


1993 ◽  
Vol 115 (2) ◽  
pp. 273-282 ◽  
Author(s):  
R. K. Goyal ◽  
W. N. Dawes

A three-dimensional viscous Navier–Stokes flow solver was used to predict core and bypass rotor performance and radial flow characteristics of a 4.6:1 bypass ratio, single-stage fan. The three-dimensional flow solver can handle several blade rows simultaneously and has the capability to include a downstream splitter. Results of the analysis are compared with experimental data obtained during rig testing of a modern high bypass single-stage turbofan in which rotor performance for both bypass and core streams was measured.


Author(s):  
Daniel J. Dorney ◽  
Douglas L. Sondak

Experimental data have shown that combustor hot streaks can lead to pressure side “hot spots” on first-stage turbine rotor blades. Although many modern turbines operate at high subsonic or transonic flow speeds, the majority of bot streak experiments and numerical simulations performed during the last decade have been for low-speed flows. The presence of shock waves in a turbine stage can significantly affect the surface temperature distributions, and a knowledge of the interaction between shock waves and combustor hot streaks may help in the turbine design process. In the present investigation, quasi-three-dimensional unsteady Navier-Stokes simulations have been performed for a high-pressure turbine operating at two vane settings. At the open-vane setting, the flow is predominantly high subsonic with no trailing-edge shock waves, and at the closed-vane setting there are trailing-edge shocks.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Author(s):  
Hongsik Im ◽  
Xiangying Chen ◽  
Gecheng Zha

Detached eddy simulation of an aeroelastic self-excited instability, flutter in NASA Rotor 67 is conducted using a fully coupled fluid/structre interaction. Time accurate compressible 3D Navier-Stokes equations are solved with a system of 5 decoupled modal equations in a fully coupled manner. The 5th order WENO scheme for the inviscid flux and the 4th order central differencing for the viscous flux are used to accurately capture interactions between the flow and vibrating blades with the DES (detached eddy simulation) of turbulence. A moving mesh concept that can improve mesh quality over the rotor tip clearance was implemented. Flutter simulations were first conducted from choke to stall using 4 blade passages. Stall flutter initiated at rotating stall onset, grows dramatically with resonance. The frequency analysis shows that resonance occurs at the first mode of the rotor blade. Before stall, the predicted responses of rotor blades decayed with time, resulting in no flutter. Full annulus simulation at peak point verifies that one can use the multi-passage approach with periodic boundary for the flutter prediction.


Author(s):  
Anil K. Tolpadi ◽  
James A. Tallman ◽  
Lamyaa El-Gabry

Conventional heat transfer design methods for turbine airfoils use 2-D boundary layer codes (BLC) combined with empiricism. While such methods may be applicable in the mid span of an airfoil, they would not be very accurate near the end-walls and airfoil tip where the flow is very three-dimensional (3-D) and complex. In order to obtain accurate heat transfer predictions along the entire span of a turbine airfoil, 3-D computational fluid dynamics (CFD) must be used. This paper describes the development of a CFD based design system to make heat transfer predictions. A 3-D, compressible, Reynolds-averaged Navier-Stokes CFD solver with k-ω turbulence modeling was used. A wall integration approach was used for boundary layer prediction. First, the numerical approach was validated against a series of fundamental airfoil cases with available data. The comparisons were very favorable. Subsequently, it was applied to a real engine airfoil at typical design conditions. A discussion of the features of the airfoil heat transfer distribution is included.


Sign in / Sign up

Export Citation Format

Share Document