Analysis of the Inter-Row Flow Field Within a Transonic Axial Compressor: Part 2 — Unsteady Flow Analysis

Author(s):  
Xavier Ottavy ◽  
Isabelle Trébinjac ◽  
André Vouillarmet

An analysis of the experimental data, obtained by laser two-focus anemometry in the IGV-rotor inter-row region of a transonic axial compressor, is presented with the aim of improving the understanding of the unsteady flow phenomena. A study of the IGV wakes and of the shock waves emanating from the leading edge of the rotor blades is proposed. Their interaction reveals the increase in magnitude of the wake passing through the moving shock. This result is highlighted by the streamwise evolution of the wake vorticity. Moreover, the results are analyzed in terms of a time averaging procedure and the purely time-dependent velocity fluctuations which occur are quantified. It may be concluded that they are of the same order of magnitude as the spatial terms for the inlet rotor flow field. That shows that the temporal fluctuations should be considered for the 3D rotor time-averaged simulations.

2000 ◽  
Vol 123 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Xavier Ottavy ◽  
Isabelle Tre´binjac ◽  
Andre´ Vouillarmet

An analysis of the experimental data, obtained by laser two-focus anemometry in the IGV-rotor interrow region of a transonic axial compressor, is presented with the aim of improving the understanding of the unsteady flow phenomena. A study of the IGV wakes and of the shock waves emanating from the leading edge of the rotor blades is proposed. Their interaction reveals the increase in magnitude of the wake passing through the moving shock. This result is highlighted by the streamwise evolution of the wake vorticity. Moreover, the results are analyzed in terms of a time-averaging procedure and the purely time-dependent velocity fluctuations that occur are quantified. It may be concluded that they are of the same order of magnitude as the spatial terms for the inlet rotor flow field. That shows that the temporal fluctuations should be considered for the three-dimensional rotor time-averaged simulations.


Author(s):  
Seishiro Saito ◽  
Kazutoyo Yamada ◽  
Masato Furukawa ◽  
Keisuke Watanabe ◽  
Akinori Matsuoka ◽  
...  

This paper describes unsteady flow phenomena of a two-stage transonic axial compressor, especially the flow field in the first stator. The stator blade with highly loaded is likely to cause a flow separation on the hub, so-called hub-corner separation. The flow mechanism of the hub-corner separation in the first stator is investigated in detail using a large-scale detached eddy simulation (DES) conducted for its full-annulus and full-stage with approximately 4.5 hundred million computational cells. The detailed analysis of complicated flow fields in the compressor is supported by data mining techniques. The data mining techniques applied in the present study include vortex identification based on the critical point theory and topological analysis of the limiting streamline pattern. The simulation results show that the flow field in the hub-corner separation is dominated by a tornado-type separation vortex. In the time averaged flow field, the hub-corner separation vortex rolls up from the hub wall, which is generated by the interaction between the mainstream flow, the leakage flow from the front partial clearance and the secondary flow across the blade passage toward the stator blade suction side. The hub-corner separation vortex suffers a vortex breakdown near the mid chord, where the high loss region due to the hub-corner separation expands drastically. In the rear part of the stator passage, a high loss region is migrated radially outward by the induced velocity of the hub-corner separation vortex. The flow field in the stator is influenced by the upstream and downstream rotors, which makes it difficult to understand the unsteady effects. The unsteady flow fields are analyzed by applying the phase-locked ensemble averaging technique. It is found from the phase-locked flow fields that the wake interaction from the upstream rotor has more influence on the stator flow field than the shock wave interaction from the downstream rotor. In the unsteady flow field, a focal-type separation also emerges on the blade suction surface, but it is periodically swept away by the wake passing of the upstream rotor. The separation vortex on the hub wall connects with the one on the blade suction surface, forming an arch-like vortex.


2016 ◽  
Vol 2016 (0) ◽  
pp. J0520201
Author(s):  
Yuki TAMURA ◽  
Seishiro SAITO ◽  
Masato FURUKAWA ◽  
Kazutoyo YAMADA ◽  
Akinori MATUOKA ◽  
...  

Author(s):  
J. Ferna´ndez Oro ◽  
K. Argu¨elles Di´az ◽  
C. Santolaria Morros ◽  
R. Ballesteros Tajadura

In the usual operation of turbomachinery, some unsteady flow phenomena appear due to the non uniformity of the flow inside the rotor, when observed in the fixed reference frame. These phenomena are often related to the unsteady character of the pressure and velocity fields, which produce oscillating forces on the blades, superimposed to the steady force. These oscillating forces are the main mechanism of noise generation, which appear even at a constant rotational speed and at flow rates where the performance curves are stable. In axial turbomachines, the interaction is due to relative motion between the static and rotating blade rows. Considering the case of a fixed blade row (stator) placed upstream of the rotor, the non uniform flow leaving those blades (usually referred as IGV blades) is observed as an unsteady flow by the rotor blades. The effect of this interaction is the generation of unsteady forces on the rotor blades, which generate vibrations (risk of fatigue failure) and noise, and non-uniformity and unsteadiness of the pressure field, that propagates as an acoustic wave. The first part of this work is a brief description of a URANS numerical modeling of the unsteady flow characteristics of a one-stage subsonic axial flow fan with a reaction degree greater than 1. The focus is placed on the statorrotor interaction performance. Both 2D and 3D models of the fan, with 13 IGV’s and 9 rotor blades, were developed and an unsteady simulation was achieved to carry out the main characteristics of the flow inside the turbomachine. Once the actuating forces are determined, the influence of the radial position, the operating conditions and the distance of the fixed and the rotating blade rows is also analyzed. The final part of the paper is focused over the identification, through the definition of deterministic stresses — related to the characteristic blade-passage frequency of every row — that provoke the interaction between fixed and rotating blade rows and its evolution through time. The object is to obtain, in a stress tensor form, the contribution of the velocity field, that is changing because of the sucessive relative positions between blade rows, to the pressure distribution over the blade surfaces in the interior of the stage. Finally, a map of deterministic stresses and even, deterministic kinetic energy, can be obtained to show the influence of the blade rows in the interaction, unsteady phenomena.


Author(s):  
Fabien Bardoux ◽  
Francis Leboeuf ◽  
Cédric Dano ◽  
Clément Toussaint

The first part of this paper analysed the time-averaged flow in a transonic single stage turbine. In this second part, we analyse the three-dimensional unsteady flow and temporal correlations in the rotor frame of reference. Two main conclusions are deduced from the comparison of each correlation. First, all correlations have the same order of magnitude. This is an important conclusion for models that handle the interaction between blade rows, because the temporal correlations are usually neglected. Second, these correlations occur in complementary localizations. In particular, the largest values of spatial deterministic correlations is located between the nozzle trailing edge and the rotor leading edge, as a consequence of nozzle wakes. Conversely, temporal deterministic correlations are located within the rotor blade row. We also establish that entropy accumulations in the stator wake near the end-wall regions generate high fluctuations of the rotor passage vortices. Such a phenomenon may have great repercussions on the radial loss distribution in the stage.


2011 ◽  
Vol 105-107 ◽  
pp. 1816-1821
Author(s):  
Yun Dong Sha ◽  
Feng Tong Zhao ◽  
Jia Han ◽  
Xian Zhi Cui

Nonsynchronous vibrations (NSVs) with high amplitude levels in the first rotor blades of a multi-stage axial compressor have been observed. The excitation is aerodynamically caused and associated with a unsteady flow field, including sound field. In order to investigate the characteristics of sound field in the axial compressor, the noise inner compressor casing are measured simultaneously with the vibration of the rotor blades on a high pressure compressor component rig testing. The results show that noise with specific frequency structures appear in the axial compressor under a pre-arranged structure adjustment and the specific operating conditions, and the noise spectrum characteristics are analyzed detailedly. Some influence factors such as rotating speed and corrected mass flow rate on noise characteristics are discussed emphatically. The results presented in this paper can be a reference for further understand of the characteristics of unsteady flow field and the effects of the high intensity sound waves on the rotor blades.


Author(s):  
Seishiro Saito ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Yuki Tamura ◽  
Akinori Matsuoka ◽  
...  

In this study, the hub-corner separation in a multi-stage transonic axial compressor has been investigated using a large-scale detached eddy simulation (DES) with about 4.5 hundred million computational cells. The complicated flow field near the hub wall in a stator with partial tip clearances was analyzed by data mining techniques extracting important flow phenomena from the DES results. The data mining techniques applied in the present study include vortex identification based on the critical point theory and topological data analysis of the limiting streamline pattern visualized by the line integral convolution (LIC) method. It is found from the time-averaged flow field in the first stator that the hub-corner separation vortex formed near the solid part of the stator tip interacts with the leakage flow and secondary flow on the hub wall, resulting in a complicated vortical flow field. Near the leading edge of the stator, the leakage flow from the front partial clearance generates the tip leakage vortex, which produces loss from the leading edge to 10 percent chord position. At the mid-chord, the hub-corner separation vortex suffers a breakdown, resulting in the widespread huge loss production. It is shown from limiting streamlines on the suction surface of the stator that a reverse flow region expands radially from the solid part of the stator tip toward the downstream. From 50 percent chord position to the trailing edge of the stator, the leakage flow through the rear partial clearance interacts with the secondary flow on the hub wall. The leakage vortex generated along the rear partial clearance becomes a major loss factor there.


Author(s):  
Dieter E. Bohn ◽  
Karsten A. Kusterer

A leading edge cooling configuration is investigated numerically by application of a 3-D conjugate fluid flow and heat transfer solver, CHT-Flow. The code has been developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It works on the basis of an implicit finite volume method combined with a multi-block technique. The cooling configuration is an axial turbine blade cascade with leading edge ejection through two rows of cooling holes. The rows are located in the vicinity of the stagnation line, one row is on the suction side, the other row is on the pressure side. The cooling holes have a radial ejection angle of 45°. This configuration has been investigated experimentally by other authors and the results have been documented as a test case for numerical calculations of ejection flow phenomena. The numerical domain includes the internal cooling fluid supply, the radially inclined holes and the complete external flow field of the turbine vane in a high resolution grid. Periodic boundary conditions have been used in the radial direction. Thus, end wall effects have been excluded. The numerical investigations focus on the aerothermal mixing process in the cooling jets and the impact on the temperature distribution on the blade surface. The radial ejection angles lead to a fully three dimensional and asymmetric jet flow field. Within a secondary flow analysis it can be shown that complex vortex systems are formed in the ejection holes and in the cooling fluid jets. The secondary flow fields include asymmetric kidney vortex systems with one dominating vortex on the back side of the jets. The numerical and experimental data show a good agreement concerning the vortex development. The phenomena on the suction side and the pressure side are principally the same. It can be found that the jets are barely touching the blade surface as the dominating vortex transports hot gas under the jets. Thus, the cooling efficiency is reduced.


2003 ◽  
Vol 125 (3) ◽  
pp. 405-415
Author(s):  
Ammar A. Al-Nahwi ◽  
James D. Paduano ◽  
Samir A. Nayfeh

This paper presents a first principles-based model of the fluid-induced forces acting on the rotor of an axial compressor. These forces are primarily associated with the presence of a nonuniform flow field around the rotor, such as that produced by a rotor tip clearance asymmetry. Simple, analytical expressions for the forces as functions of basic flow field quantities are obtained. These expressions allow an intuitive understanding of the nature of the forces and—when combined with a rudimentary model of an axial compressor flow field (the Moore-Greitzer model)—enable computation of the forces as a function of compressor geometry, torque and pressure-rise characteristics, and operating point. The forces predicted by the model are also compared to recently published measurements and more complex analytical models, and are found to be in reasonable agreement. The model elucidates that the fluid-induced forces comprise three main contributions: fluid turning in the rotor blades, pressure distribution around the rotor, and unsteady momentum storage within the rotor. The model also confirms recent efforts in that the orientation of fluid-induced forces is locked to the flow nonuniformity, not to tip clearance asymmetry as is traditionally assumed. The turning and pressure force contributions are shown to be of comparable magnitudes—and therefore of equal importance—for operating points between the design point and the peak of the compressor characteristic. Within this operating range, both “forward” and “backward” rotor whirl tendencies are shown to be possible. This work extends recent efforts by developing a more complete, yet compact, description of fluid-induced forces in that it accounts for all relevant force contributions, both tangential and radial, that may influence the dynamics of the rotor. Hence it constitutes an essential element of a consistent treatment of rotordynamic stability under the action of fluid-induced forces, which is the subject of Part II of this paper.


Sign in / Sign up

Export Citation Format

Share Document