Flow Structure and Unsteady Behavior of Hub-Corner Separation in a Stator Cascade of a Multi-Stage Transonic Axial Compressor

Author(s):  
Seishiro Saito ◽  
Kazutoyo Yamada ◽  
Masato Furukawa ◽  
Keisuke Watanabe ◽  
Akinori Matsuoka ◽  
...  

This paper describes unsteady flow phenomena of a two-stage transonic axial compressor, especially the flow field in the first stator. The stator blade with highly loaded is likely to cause a flow separation on the hub, so-called hub-corner separation. The flow mechanism of the hub-corner separation in the first stator is investigated in detail using a large-scale detached eddy simulation (DES) conducted for its full-annulus and full-stage with approximately 4.5 hundred million computational cells. The detailed analysis of complicated flow fields in the compressor is supported by data mining techniques. The data mining techniques applied in the present study include vortex identification based on the critical point theory and topological analysis of the limiting streamline pattern. The simulation results show that the flow field in the hub-corner separation is dominated by a tornado-type separation vortex. In the time averaged flow field, the hub-corner separation vortex rolls up from the hub wall, which is generated by the interaction between the mainstream flow, the leakage flow from the front partial clearance and the secondary flow across the blade passage toward the stator blade suction side. The hub-corner separation vortex suffers a vortex breakdown near the mid chord, where the high loss region due to the hub-corner separation expands drastically. In the rear part of the stator passage, a high loss region is migrated radially outward by the induced velocity of the hub-corner separation vortex. The flow field in the stator is influenced by the upstream and downstream rotors, which makes it difficult to understand the unsteady effects. The unsteady flow fields are analyzed by applying the phase-locked ensemble averaging technique. It is found from the phase-locked flow fields that the wake interaction from the upstream rotor has more influence on the stator flow field than the shock wave interaction from the downstream rotor. In the unsteady flow field, a focal-type separation also emerges on the blade suction surface, but it is periodically swept away by the wake passing of the upstream rotor. The separation vortex on the hub wall connects with the one on the blade suction surface, forming an arch-like vortex.

Author(s):  
Seishiro Saito ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Yuki Tamura ◽  
Akinori Matsuoka ◽  
...  

In this study, the hub-corner separation in a multi-stage transonic axial compressor has been investigated using a large-scale detached eddy simulation (DES) with about 4.5 hundred million computational cells. The complicated flow field near the hub wall in a stator with partial tip clearances was analyzed by data mining techniques extracting important flow phenomena from the DES results. The data mining techniques applied in the present study include vortex identification based on the critical point theory and topological data analysis of the limiting streamline pattern visualized by the line integral convolution (LIC) method. It is found from the time-averaged flow field in the first stator that the hub-corner separation vortex formed near the solid part of the stator tip interacts with the leakage flow and secondary flow on the hub wall, resulting in a complicated vortical flow field. Near the leading edge of the stator, the leakage flow from the front partial clearance generates the tip leakage vortex, which produces loss from the leading edge to 10 percent chord position. At the mid-chord, the hub-corner separation vortex suffers a breakdown, resulting in the widespread huge loss production. It is shown from limiting streamlines on the suction surface of the stator that a reverse flow region expands radially from the solid part of the stator tip toward the downstream. From 50 percent chord position to the trailing edge of the stator, the leakage flow through the rear partial clearance interacts with the secondary flow on the hub wall. The leakage vortex generated along the rear partial clearance becomes a major loss factor there.


Author(s):  
Wenfeng Zhao ◽  
Bin Jiang ◽  
Qun Zheng

Hub corner is the high-loss area in the blade passages of turbo machinery. It is well known that the flow separation and vortex development in this area affects directly not only the energy losses and efficiency, but also the stability of axial compressors. Linear compressor cascades with partial gaps and trailing gaps which can blow away the corner separation by the pressure difference between the suction surface and pressure surface are numerically simulated in this paper. A proposed linear cascade model with gaps has been built. The steady flow field in a linear cascade with different length gaps is studied by numerical simulation of RANS with SST turbulence model and γ-Reθ transition model focusing on the streamline structure between the corner separation vortex and the gap leakage vortex, especially the interaction of the two vertical vortex. When the length of trailing edge gaps is enough (in this paper, the optimal length of the gap is 30% chord), the corner vortex basically disappears completely. At the same time, the mode of flow field changes from the closed separation to the open separation.


2016 ◽  
Vol 2016 (0) ◽  
pp. J0520201
Author(s):  
Yuki TAMURA ◽  
Seishiro SAITO ◽  
Masato FURUKAWA ◽  
Kazutoyo YAMADA ◽  
Akinori MATUOKA ◽  
...  

Author(s):  
Xavier Ottavy ◽  
Isabelle Trébinjac ◽  
André Vouillarmet

An analysis of the experimental data, obtained by laser two-focus anemometry in the IGV-rotor inter-row region of a transonic axial compressor, is presented with the aim of improving the understanding of the unsteady flow phenomena. A study of the IGV wakes and of the shock waves emanating from the leading edge of the rotor blades is proposed. Their interaction reveals the increase in magnitude of the wake passing through the moving shock. This result is highlighted by the streamwise evolution of the wake vorticity. Moreover, the results are analyzed in terms of a time averaging procedure and the purely time-dependent velocity fluctuations which occur are quantified. It may be concluded that they are of the same order of magnitude as the spatial terms for the inlet rotor flow field. That shows that the temporal fluctuations should be considered for the 3D rotor time-averaged simulations.


Author(s):  
Seishiro Saito ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Keisuke Watanabe ◽  
Akinori Matsuoka ◽  
...  

Abstract Flow structure and flow loss generation in a transonic axial compressor has been numerically investigated by using a large-scale detached eddy simulation (DES). The data mining techniques, which include a vortex identification based on the critical point theory and a limiting streamline visualization with the line integral convolution (LIC) method, were applied to the DES result in order to analyze the complicated flow field in compressor. The flow loss in unsteady flow field was evaluated by entropy production rate, and the loss mechanism and the loss amount of each flow phenomenon were investigated for the first rotor and the first stator. In the first rotor, a shock-induced separation is caused by the detached shock wave and the passage shock wave. On the hub side, a hub-corner separation occurs due to the secondary flow on the hub surface, and a hub-corner separation vortex is clearly formed. The flow loss is mainly caused by the blade boundary layer and wake, and the loss due to the shock wave is very small, only about 1 percent of the total loss amount in the first rotor. However, the shock/boundary layer interaction causes an additional loss in the blade boundary layer and the wake, which amount reaches to about 30 percent of the total. In the first stator, the hub-corner separation occurs on the suction side. Although only one hub-corner separation vortex is formed in the averaged flow field, the hub-corner separation vortex is generated in multiple pieces and those pieces interfere with each other in an instantaneous flow field. The hub-corner separation generates huge loss over a wide range, however, the loss generation around the hub-corner separation vortex is not so large, and the flow loss is mainly produced in the shear layer between the mainstream region and the separation region. The main factors of loss generation are the boundary layer, wake and hub-corner separation, which account for about 80 percent of the total loss amount in the first stator.


Author(s):  
Hongwei Ma ◽  
Haokang Jiang ◽  
Qingguo Zhang

This paper reports an experimental study of the three-dimensional unsteady flow field due to IGV-rotor interaction in the tip region of an axial compressor rotor passage. The measurements were conducted on a low-speed large-scale axial compressor using a 3-component Laser Doppler Velocimetry. Both experimental method and measurement techniques are presented in details. The results indicate that the tip corner flow of the IGV suction surface has deeper effects on the downstream flow than the IGV wake in the tip region. The interaction and the flow mixing among the IGV wake, the IGV comer flow and the rotor leading-edge flow occur at the inlet of a rotor passage, which make the rotor inlet flow three-dimensional, turbulent and unsteady. The low-energy fluids from the upstream tend to accumulate toward the rotor pressure surface after they enter a rotor passage. In the procedure, the interaction and the flow mixing among the rotor tip leakage vortex and the low-energy fluids occur in the rotor passage.


2000 ◽  
Vol 123 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Xavier Ottavy ◽  
Isabelle Tre´binjac ◽  
Andre´ Vouillarmet

An analysis of the experimental data, obtained by laser two-focus anemometry in the IGV-rotor interrow region of a transonic axial compressor, is presented with the aim of improving the understanding of the unsteady flow phenomena. A study of the IGV wakes and of the shock waves emanating from the leading edge of the rotor blades is proposed. Their interaction reveals the increase in magnitude of the wake passing through the moving shock. This result is highlighted by the streamwise evolution of the wake vorticity. Moreover, the results are analyzed in terms of a time-averaging procedure and the purely time-dependent velocity fluctuations that occur are quantified. It may be concluded that they are of the same order of magnitude as the spatial terms for the inlet rotor flow field. That shows that the temporal fluctuations should be considered for the three-dimensional rotor time-averaged simulations.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Tian Liang ◽  
Bo Liu ◽  
Stephen Spence

Abstract Control of corner separation in axial compressor blade rows has attracted much interest due to its potential to improve compressor efficiency and the energy utilization in turbomachinery. This paper investigates the effectiveness and mechanisms of boundary layer suction in controlling the corner separation of a highly loaded axial compressor cascade. Numerical simulations have been carried out to investigate the effect of different suction schemes on the loss downstream of the cascade and the change in incidence characteristics with the variation of the suction flowrate. The results show that the effectiveness of flow suction in controlling the flow separation depends heavily on the proportion of the blade for which it is applied. It was found that suction along part of the blade span on the suction surface could effectively remove the separation at the region of the span influenced by the suction slot. However, this resulted in a deterioration of the flow field at other parts of the span. The full-span suction scheme on the suction surface not only eliminated the separation of the boundary layer in the middle of the blade but also significantly improved the flow uniformity near the end-wall. Despite the improvement in flow uniformity using the full-span suction scheme, a three-dimensional (3D) corner separation still existed due to the strong cross-passage pressure gradient. To improve the flow field uniformity further, two combined suction schemes with one spanwise slot on the suction surface and another slot on the end-wall were designed in order to fully remove both the separated flow on the blade suction surface and the 3D corner separation. It was found that the total pressure loss coefficient was reduced significantly by 63.8% with suction flowrates of 1.88% and 0.82% for the slots on the suction surface and the end-wall, respectively. Further work showed that the behavior of the loss coefficient is different as the combination of suction flowrates is changed for different incidence. The cascade loss at high incidence operation can be more effectively reduced with suction control on the end-wall. When implementing combined suction, it is necessary to determine the best combination of suction flowrate according to the incidence level.


1987 ◽  
Vol 109 (3) ◽  
pp. 354-361 ◽  
Author(s):  
Y. Dong ◽  
S. J. Gallimore ◽  
H. P. Hodson

Measurements have been performed in a low-speed high-reaction single-stage axial compressor. Data obtained within and downstream of the rotor, when correlated with the results of other investigations, provide a link between the existence of suction surface–hub corner separations, their associated loss mechanisms, and blade loading. Within the stator, it has been shown that introducing a small clearance between the stator blade and the stationary hub increases the efficiency of the stator compared to the case with no clearance. Oil flow visualizaton indicated that the leakage reduced the extensive suction surface–hub corner separation that would otherwise exist. A tracer gas experiment showed that the large radial shifts of the surface streamlines indicated by the oil flow technique were only present close to the blade. The investigation demonstrates the possible advantages of including hub clearance in axial flow compressor stator blade rows.


Sign in / Sign up

Export Citation Format

Share Document