Comparison of Cooling Film Development Calculations for Transpiration Cooled Flat Plates With Different Turbulence Models

Author(s):  
Dieter E. Bohn ◽  
Norbert Moritz

A transpiration cooled flat plate configuration is investigated numerically by application of a 3-D conjugate fluid flow and heat transfer solver, CHT-Flow. The geometrical setup and the fluid flow conditions are derived from modern gas turbine combustion chambers. The plate is composed of three layers, a substrate layer (CMSX-4) with a thickness of 2 mm, a bondcoat (MCrAlY) with thickness 0,15 mm, and a thermal barrier coating (EB-PVD, Yttrium stabilized ZrO2) with thickness 0,25 mm, respectively. The numerical grid contains the coolant supply (plenum), the solid body, and the main flow area upon the plate. The transpiration cooling is realized by finest drilled holes with a diameter of 0,2 mm that are shaped in the region of the thermal barrier coating. The holes are inclined with an angle of 30°. Two different configurations are investigated that differ in the shaping of the holes in their outlet region. The numerical investigation focus on the influence of different turbulence models on the results. Regarding the secondary flow, the cooling film development and complex jet mixing vortex systems are analyzed. Additionally, the impact on the temperature distribution both on the plate surface and in the plate is investigated. It is shown that the choice of the turbulence model has a significant influence on the prediction of the flow structure, and, consequently, on the calculation of the thermal load of the solid body.

Author(s):  
J. D. MacLeod ◽  
J. C. G. Laflamme

Under the sponsorship of the Canadian Department of National Defence, the Engine Laboratory of the National Research Council of Canada has evaluated the influence of applying a thermal barrier coating on the performance of a gas turbine engine. The effort is aimed at quantifying the performance effects of a particular ceramic coating on the first stage turbine vanes. The long term objective of the program is to both assess the relative change in engine performance and compare against the claimed benefits of higher possible turbine inlet temperatures, longer time in service and increased time between overhauls. The engine used for this evaluation was the Allison T56 turboprop with the first stage turbine nozzles coated with the Chromalloy RT-33 ceramic coating. The issues addressed in testing this particular type of hot section coating were; 1) effect of coating thickness on nozzle effective flow area; 2) surface roughness influence on turbine efficiency; This paper describes the project objectives, the experimental installation, and the results of the performance evaluations. Discussed are performance variations due to coating thickness and surface roughness on engine performance characteristics. As the performance changes were small, a rigorous measurement uncertainty analysis is included. The coating application process, and the affected overhaul procedures are examined. The results of the pre- and post-coating turbine testing are presented, with a discussion of the impact on engine performance.


2019 ◽  
pp. 146808741989348 ◽  
Author(s):  
Eric Gingrich ◽  
Michael Tess ◽  
Vamshi Korivi ◽  
Peter Schihl ◽  
John Saputo ◽  
...  

Thermal barrier coatings of various thickness and surface roughness were applied to the piston crown of a single-cylinder research engine and tested over a range of high-output diesel operating conditions, some near 30 bar gross indicated mean effective pressure. Three yttria-stabilized zirconia coated pistons were compared to a baseline metal piston. At each operating condition, a start-of-injection sweep was conducted to generate efficiency trends and find the optimal combustion phasing. Three variations of pistons coated with a graded-layer thermal barrier coating were tested: (1) 0.185 mm coating thickness with a surface roughness of approximately Ra = 11.8 µm, (2) 0.325 mm thickness with Ra = 11.8 µm, and (3) 0.325 mm thickness with Ra = 6.0 µm. Both coated pistons with Ra = 11.8 µm did not show any statistically significant improvement to engine performance when compared to the metal baseline piston, but did produce higher filter smoke numbers. The coated piston with Ra = 6.0 µm and 0.325 mm showed an increase of gross indicated thermal efficiency of up to 3.5% (relative) compared to the metal baseline piston for operating conditions comparable to standard engine operation and a reduction of filter smoke number back to the metal baseline. The increase in efficiency was found to correlate with additional late-cycle apparent heat release and a reduction in in-cylinder heat transfer. The very high-output conditions showed statistically insignificant changes in performance or heat transfer, which may have been related to the long injection duration used for these cases targeting outside of the piston bowl.


Author(s):  
Stephanie A. Wimmer ◽  
Virginia G. DeGiorgi ◽  
Edward Gorzkowski ◽  
Scooter Johnson

Thermal barrier coatings are used to reduce base metal temperature and can be found on many engine components such as turbine blades and exhausts. The presented work is part of a broader effort which is focused on maintaining mechanical properties while improving thermal properties of candidate thermal barrier coating materials. Specifically this effort is investigating new and novel processing techniques to improve thermal properties while maintaining sufficient mechanical properties so that coatings do not fail due to the loads inherent to normal operation of the component. Processing methods have been investigated that create new microstructures by the inclusion of spherical, micron size pores to reflect radiation (i.e. heat) at high temperatures providing additional thermal protection while maintaining strength. This paper computationally examines the size, distribution, and structure of pores that develop during bulk processing of a model material, yttria-stabilized zirconia (YSZ) to aid in the formulation of an optimized process. Heat transfer and stress-displacement analyses are performed to determine effective bulk material properties. Two-dimensional microstructures are the first step towards understanding the impact of pores, voids and microcracks on thermal and mechanical characteristics. In this work two-dimensional microstructures are computer generated to determine the influence on variations in pore number, size and relative percent of pores and cracks. Comparisons are made to experimental measurements when appropriate.


Author(s):  
Hans-Peter Bossmann ◽  
Thomas Duda ◽  
Joerg Krueckels ◽  
Sebastian Mihm ◽  
Roland Mücke ◽  
...  

The assessment of Bondcoat/Thermal barrier coating systems is an inherent part of the lifing process of gas turbine component. On the one hand, coatings are considered in the constitutive modelling — e.g. in the thermal model and for the prediction of eigenfrequencies of gas turbine blades. On the other hand, the influence of the coating system on the lifetime of the part (target cyclic life and target operation hours) needs to be assessed. This paper addresses the prediction of coating lifetime. Lifing models of Bondcoat/Thermal barrier coating systems (BC/TBC) are commonly built using isothermal furnace cyclic tests (FCT). The lifetime of the BC/TBC under such test conditions has been shown to depend on multiple coating parameters like TBC thickness, TBC porosity, BC thickness, BC roughness, and also on testing temperature. For example, the TBC life (defined as time to partial TBC spallation) is reduced with increasing temperature, with increasing TBC thickness and decreasing porosity and BC roughness. When operating in a gas turbine (GT), the TBC surface temperature and the BC temperature depend on engine operating conditions, heat transfer of combustion gas and cooling air, coating microstructure and thickness. For instance, a TBC with high porosity typically demonstrates a lower thermal conductivity than that with low porosity. For otherwise same boundary conditions, the BC temperature will decrease with increasing TBC porosity and increasing TBC thickness. The benefit of having a high coating porosity observed in FCT is further amplified by its impact on reducing the BC temperature in GT operation. To the contrary, the positive impact of a reduced TBC thickness observed in FCT is reduced by its negative impact on an increased BC temperature during GT operation. Taking these effects into account a probabilistic lifing model is proposed based on Monte Carlo simulations. Using this model the impact of the manufacturing scatter on the BC/TBC life can be assessed, and enables improved manufacturing by focusing on those parameters that are most critical for coating lifetime.


2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


2012 ◽  
Vol 132 (10) ◽  
pp. 864-870
Author(s):  
Tetsuo Fukuchi ◽  
Norikazu Fuse ◽  
Mitsutoshi Okada ◽  
Tomoharu Fujii ◽  
Maya Mizuno ◽  
...  

2017 ◽  
Vol 137 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Tetsuo Fukuchi ◽  
Norikazu Fuse ◽  
Mitsutoshi Okada ◽  
Tomoharu Fujii ◽  
Maya Mizuno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document