Friction Modeling of a Free-Spinning Bicycle Wheel

2003 ◽  
Author(s):  
Shuguang Huang ◽  
Mark Nagurka

An experiment is conducted in which a free-standing bicycle wheel is given an initial angular speed and then allowed to slow down to rest. Measurements of the wheel speed, using a magnetic sensor, during the decay are compared to predictions from a model accounting for a combination of viscous and dry friction at the wheel bearing. The time history data indicate two dynamic regimes: (i) a higher speed phase corresponding to the first part of the motion for which a simple viscous friction model applies, and (ii) a slower speed phase corresponding to low speed to stop behavior for which a model involving both viscous and dry friction is proposed. A method is presented for finding the viscous and dry friction coefficients of the two phases.

Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 212-232
Author(s):  
Ludwig Herzog ◽  
Klaus Augsburg

The important change in the transition from partial to high automation is that a vehicle can drive autonomously, without active human involvement. This fact increases the current requirements regarding ride comfort and dictates new challenges for automotive shock absorbers. There exist two common types of automotive shock absorber with two friction types: The intended viscous friction dissipates the chassis vibrations, while the unwanted solid body friction is generated by the rubbing of the damper’s seals and guides during actuation. The latter so-called static friction impairs ride comfort and demands appropriate friction modeling for the control of adaptive or active suspension systems. In this article, a simulation approach is introduced to model damper friction based on the most friction-relevant parameters. Since damper friction is highly dependent on geometry, which can vary widely, three-dimensional (3D) structural FEM is used to determine the deformations of the damper parts resulting from mounting and varying operation conditions. In the respective contact zones, a dynamic friction model is applied and parameterized based on the single friction point measurements. Subsequent to the parameterization of the overall friction model with geometry data, operation conditions, material properties and friction model parameters, single friction point simulations are performed, analyzed and validated against single friction point measurements. It is shown that this simulation method allows for friction prediction with high accuracy. Consequently, its application enables a wide range of parameters relevant to damper friction to be investigated with significantly increased development efficiency.


Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 197-211
Author(s):  
Ludwig Herzog ◽  
Klaus Augsburg

The most important change in the transition from partial to high automation is that the vehicle can drive autonomously, without active human involvement. This fact increases the current requirements regarding ride comfort and dictates new challenges for automotive shock absorbers. There exist two common types of automotive shock absorbers with two friction types. The intended viscous friction dissipates the chassis’ vibrations, while the unwanted solid body friction is generated by the rubbing of the damper’s seals and guides during actuation. The latter so-called static friction impairs ride comfort and demands appropriate friction modeling for the control of adaptive or active suspension systems. In the current article, the simulation approach introduced in part 1 of this study is validated against a single friction point and full damper friction measurements. To achieve that, a friction measurement method with novel test rigs has been developed, which allows for reliable determination of the friction behavior of each single friction point, while appropriately resembling the operating conditions of the real damper. The subsequent presentation of a friction simulation using friction model parameters from different geometry shows the general applicability of the overall friction investigation methodology. Accordingly, the presented simulation and measurement approaches enable the investigation of dynamic friction in automotive shock absorbers with significantly increased development efficiency.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Alessandro Ferrari ◽  
Oscar Vento

Abstract Frequency-dependent friction can be an important dissipative factor for unsteady flows. In this research investigation, various popular models have been reviewed thoroughly and then applied to evaluate frequency-dependent friction in high-pressure transient flows. Three piezoresistive transducers were used to measure pressure signals along a 2 m high-pressure pipe: the first and the third signal were assumed as boundary conditions in a homemade code that is able to solve the velocity and pressure fields along the pipe. The simulation pressure data have been compared with the pressure signal measured by means of the transducer installed in the middle of the pipe. In addition, an injector model has been applied to a 2 m pipe in order to perform additional simulations in which the rail pressure time distribution and the electrical current time history to the injector are provided as boundary conditions. It has been observed that when frequency-dependent friction is taken into account, more accurate pressure results are generally obtained along the injector supply line than in the case in which the viscous stress is calculated by only taking into account the steady-state Darcy–Weisbach contribution. On the other hand, on the basis of a comparison between the obtained numerical results and experimental traces, the improvement is not related to the method by which the unsteady friction is evaluated. Therefore, the simplest frequency-dependent friction model is recommended to simulate high-pressure transient flows in pipes with a shorter aspect ratio than 800 and lower Reynolds numbers than 104.


Author(s):  
Chaofeng Li ◽  
Zengchuang Shen ◽  
Zilin Chen ◽  
Houxin She

The vibration dissipation mechanism of the rotating blade with a dovetail joint is studied in this paper. Dry friction damping plays an indispensable role in the direction of vibration reduction. The vibration level is reduced by consuming the total energy of the turbine blade with the dry friction device on the blade-root in the paper. The mechanism of the vibration reduction is revealed by the variation of the friction force and the energy dissipation ratio of dry friction. In this paper, the flexible blade with a dovetail interface feature is discretized by using the spatial beam element based on the finite element theory. Then the classical Coulomb-spring friction model is introduced to obtain the dry friction model on the contact interfaces of the tenon-mortise structure. What is more, the effects of the system parameters (such as the rotating speed, the friction coefficient, the installation angle of the tenon) and the excitation level on blade damping characteristics are discussed, respectively. The results show that the variation of the system parameters leads to a significant change of damping characteristics of the blade. The variation of the tangential stiffness and the position of the external excitation will affect the nonlinear characteristics and vibration damping characteristics.


Meccanica ◽  
2021 ◽  
Author(s):  
Gábor Csernák ◽  
Gábor Licskó

AbstractThe responses of a simple harmonically excited dry friction oscillator are analysed in the case when the coefficients of static and kinetic coefficients of friction are different. One- and two-parameter bifurcation curves are determined at suitable parameters by continuation method and the largest Lyapunov exponents of the obtained solutions are estimated. It is shown that chaotic solutions can occur in broad parameter domains—even at realistic friction parameters—that are tightly enclosed by well-defined two-parameter bifurcation curves. The performed analysis also reveals that chaotic trajectories are bifurcating from special asymmetric solutions. To check the robustness of the qualitative results, characteristic bifurcation branches of two slightly modified oscillators are also determined: one with a higher harmonic in the excitation, and another one where Coulomb friction is exchanged by a corresponding LuGre friction model. The qualitative agreement of the diagrams supports the validity of the results.


2021 ◽  
Author(s):  
Qingyuan Lin ◽  
Yong Zhao ◽  
Qingchao Sun ◽  
Kunyong Chen

Abstract Bolted connection is one of the most widely used mechanical connections because of its easiness of installation and disassembly. Research of bolted joints mainly focuses on two aspects: high precision tightening and improvement of anti-loosening performance. The under-head bearing friction coefficient and the thread friction coefficient are the two most important parameters that affect the tightening result of the bolted joint. They are also the most critical parameters that affect the anti-loosening performance of the bolted joint. Coulomb friction model is a commonly used model to describe under-head bearing friction and thread friction, which considers the friction coefficient as a constant independent of normal pressure and relative sliding velocity. In this paper, the viscous effect of the under-head bearing friction and thread friction is observed by measuring the friction coefficient of bolted joints. The value of the friction coefficient increases with the increase of the relative sliding velocity and the decrease of the normal pressure. It is found that the Coulomb viscous friction model can better describe the friction coefficient of bolted joints. Taking into account the dense friction effect, the loosening prediction model of bolted joints is modified. The experimental results show that the Coulomb viscous friction model can better describe the under-head bearing friction coefficient and thread friction coefficient. The model considering the dense effect can more accurately predict the loosening characteristics of bolted joints.


2014 ◽  
Vol 997 ◽  
pp. 321-324
Author(s):  
Wei Zheng ◽  
Guang Chun Wang ◽  
Bing Tao Tang ◽  
Xiao Juan Lin ◽  
Yan Zhi Sun

After modifying the Wahime/Bay friction model, a new friction model suitable for micro-forming process without lubrication is established. In this model, it is shows that the friction coefficient is a function of strain hardening exponent, the normal pressure and the initial yield stress of material. Based on the experimental data, the micro-upsetting process is simulated using the proposed friction model. The simulation results are used to investigate the size effect on the dry friction behavior. It is found that the Coulomb’s friction coefficient is dropping with miniaturization of specimens when the amount of reduction is not too large.


Author(s):  
Yun-Hsiang Sun ◽  
Tao Chen ◽  
Christine Qiong Wu ◽  
Cyrus Shafai

In this paper, we provide not only key knowledge for friction model selection among candidate models but also experimental friction features compared with numerical predictions reproduced by the candidate models. A motor-driven one-dimensional sliding block has been designed and fabricated in our lab to carry out a wide range of control tasks for the friction feature demonstrations and the parameter identifications of the candidate models. Besides the well-known static features such as break-away force and viscous friction, our setup experimentally demonstrates subtle dynamic features that characterize the physical behavior. The candidate models coupled with correct parameters experimentally obtained from our setup are taken to simulate the features of interest. The first part of this work briefly introduces the candidate friction models, the friction features of interest, and our experimental approach. The second part of this work is dedicated to the comparisons between the experimental features and the numerical model predictions. The discrepancies between the experimental features and the numerical model predictions help researchers to judge the accuracy of the models. The relation between the candidate model structures and their numerical friction feature predictions is investigated and discussed. A table that summarizes how to select the most optimal friction model among a variety of engineering applications is presented at the end of this paper. Such comprehensive comparisons have not been reported in previous literature.


Author(s):  
Sue Ann Campbell ◽  
Stephanie Crawford ◽  
Kirsten Morris

We consider an experimental system consisting of a pendulum, which is free to rotate 360 degrees, attached to a cart which can move in one dimension. There is stick slip friction between the cart and the track on which it moves. Using two different models for this friction we design feedback controllers to stabilize the pendulum in the upright position. We show that controllers based on either friction model give better performance than one based on a simple viscous friction model. We then study the effect of time delay in this controller, by calculating the critical time delay where the system loses stability and comparing the calculated value with experimental data. Both models lead to controllers with similar robustness with respect to delay. Using numerical simulations, we show that the effective critical time delay of the experiment is much less than the calculated theoretical value because the basin of attraction of the stable equilibrium point is very small.


Sign in / Sign up

Export Citation Format

Share Document