Problems of the Heat Exchanger for Vehicular Gas Turbines

Author(s):  
E. Tiefenbacher

It is well known that a vehicular gas turbine needs a heat exchanger to compete in fuel consumption with the piston engine, especially with the diesel. A short review of the theory of heat exchange shows that very small hydraulic diameters must be used to obtain a reasonable heat exchanger volume. This causes a number of problems for the fabrication, engine configuration, flow distribution, etc. These problems are discussed in conjunction with experience gained during the development of a number of heat exchangers (1).

1964 ◽  
Vol 86 (2) ◽  
pp. 121-126 ◽  
Author(s):  
J. R. Mondt

Design, fabrication, and operation experience with periodic-flow heat exchangers used in General Motors regenerative vehicular gas turbines has indicated that analysis techniques available in published reports are too restrictive for accurate performance and thermal distortion calculations. The design usefulness of previously published analyses is somewhat limited because fluid and metal temperature distributions are not part of the calculated results. These distributions are required for primary seal matching and core and structural thermal stress calculations. A nodal analysis has been accomplished at the General Motors Research Laboratories and a type of finite difference solution obtained for the periodic-flow heat exchanger. This solution can be used to study the effects of longitudinal thermal conduction, variable heat-transfer coefficients, finite rotation, and provides temperature distributions as functions of time and space for transient as well as “steady-state.” This has been checked both with available solutions for more simplified cases and some experimental measured results for periodic flow heat exchangers designed and built as part of the General Motors vehicular regenerative gas turbine program. A brief outline of the calculation procedures, program capabilities, and some calculated results is presented. This includes temperature distributions for periodic-flow heat-exchanger parameters encountered in the vehicular regenerator application.


Author(s):  
James R. Mondt

Design, fabrication and operation experience with periodic-flow heat exchangers used in General Motors regenerative vehicular gas turbines has indicated that analysis techniques available in published reports are too restrictive for accurate performance and thermal-distortion calculations. The design usefulness of previously published anaylses is somewhat limited because fluid and metal-temperature distributions are not part of the calculated results. These distributions are required for primary seal matching and core and structural thermal-stress calculations. A nodal analysis has been accomplished at the General Motors Research Laboratories and a type of finite-difference solution obtained for the periodic-flow heat exchanger. This solution can be used to study the effects of longitudinal thermal conduction, variable heat-transfer coefficients, finite rotation, and provides temperature distributions as functions of time and space for transient as well as “steady state.” This has been checked both with available solutions for more simplified cases and some experimental measured results for periodic-flow heat exchangers designed and built as part of the General Motors vehicular regenerative gas-turbine program. A brief outline of the calculation procedures, program capabilities, and some calculated results are presented. This includes temperature distributions for periodic-flow heat exchanger parameters encountered in the vehicular regenerator application.


Author(s):  
Colin F. McDonald

In the power generation field, simple cycle gas turbines are dominant, with heat exchanged variants only selected based on particular user’s requirements. For the lesser known closed Brayton cycle (CBC) power plant, heat exchangers are mandatory. The following three categories of heat exchangers are addressed in this paper, 1) heat input to the closed cycle from an external source; for example the heat exchanger in a fluidized bed combuster in the case of a fossil-fired plant, or an intermediate heat exchanger (IHX) in the case of an indirect cycle nuclear gas turbine, 2) recuperator in the system to enhance efficiency, and 3) exchangers (i.e., precooler and intercooler) for heat rejection from the system. The influence that these heat exchangers have on the selection of system parameters, and plant performance is discussed. Heat exchanger technology state-of-the-art for CBC systems is highlighted.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


2009 ◽  
Vol 13 (4) ◽  
pp. 41-48
Author(s):  
Zheshu Ma ◽  
Zhenhuan Zhu

Indirectly or externally-fired gas-turbines (IFGT or EFGT) are novel technology under development for small and medium scale combined power and heat supplies in combination with micro gas turbine technologies mainly for the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass or 'dirty' fuel by employing a high temperature heat exchanger to avoid the combustion gases passing through the turbine. In this paper, by assuming that all fluid friction losses in the compressor and turbine are quantified by a corresponding isentropic efficiency and all global irreversibilities in the high temperature heat exchanger are taken into account by an effective efficiency, a one dimensional model including power output and cycle efficiency formulation is derived for a class of real IFGT cycles. To illustrate and analyze the effect of operational parameters on IFGT efficiency, detailed numerical analysis and figures are produced. The results summarized by figures show that IFGT cycles are most efficient under low compression ratio ranges (3.0-6.0) and fit for low power output circumstances integrating with micro gas turbine technology. The model derived can be used to analyze and forecast performance of real IFGT configurations.


1978 ◽  
Author(s):  
C. F. McDonald

With soaring fuel costs and diminishing clean fuel availability, the efficiency of the industrial gas turbine must be improved by utilizing the exhaust waste heat by either incorporating a recuperator or by co-generation, or both. In the future, gas turbines for power generation should be capable of operation on fuels hitherto not exploited in this prime-mover, i.e., coal and nuclear fuel. The recuperative gas turbine can be used for open-cycle, indirect cycle, and closed-cycle applications, the latter now receiving renewed attention because of its adaptability to both fossil (coal) and nuclear (high temperature gas-cooled reactor) heat sources. All of these prime-movers require a viable high temperature heat exchanger for high plant efficiency. In this paper, emphasis is placed on the increasingly important role of the recuperator and the complete spectrum of recuperative gas turbine applications is surveyed, from lightweight propulsion engines, through vehicular and industrial prime-movers, to the large utility size nuclear closed-cycle gas turbine. For each application, the appropriate design criteria, types of recuperator construction (plate-fin or tubular etc.), and heat exchanger material (metal or ceramic) are briefly discussed.


2001 ◽  
Author(s):  
Arash Saidi ◽  
Daniel Eriksson ◽  
Bengt Sundén

Abstract This paper presents a discussion and comparison of some heat exchanger types readily applicable to use as intercoolers in gas turbine systems. The present study concerns a heat duty of the intercooler for a gas turbine of around 17 MW power output. Four different types of air-water heat exchangers are considered. This selection is motivated because of the practical aspects of the problem. Each configuration is discussed and explained, regarding advantages and disadvantages. The available literature on the pressure drop and heat transfer correlations is used to determine the thermal-hydraulic performance of the various heat exchangers. Then a comparison of the intercooler core volume, weight, pressure drop is presented.


Author(s):  
Qun Zheng ◽  
Minghong Li ◽  
Yufeng Sun

Thermodynamic performance of wet compression and regenerative (WCR) gas turbine are investigated in this paper. The regenerative process can be achieved by a gas/air (and steam) heat exchanger, a regenerator, or by a heat recovery steam generator and then the steam injected into the gas turbine. Several schemes of the above wet compression and regenerative cycles are computed and analyzed. The calculated results indicate that not only a significant specific power can be obtained, but also is the WCR gas turbine an economic competitive option of efficient gas turbines.


1959 ◽  
Vol 81 (3) ◽  
pp. 290-297
Author(s):  
Frank L. Schwartz

Many experimental models of gas turbines have been built for vehicle propulsion, and indications are that production models may be available within the next decade. Special effort has been devoted in recent years to improving the fuel consumption by adding heat exchangers to the originally proposed simple-cycle gas turbines. If they are to be competitive with reciprocating engines, gas turbines must not only be equal or better in performance, but equal or lower in cost. This would require manufacture in large quantities, and it is very likely that the first production models will be in a low-priced high-production automobile.


Sign in / Sign up

Export Citation Format

Share Document