scholarly journals Combustion of Methanol and Liquefied Butane in a Gas Turbine Combustor

Author(s):  
S. Kajita ◽  
J. Kitajima ◽  
T. Kimura

Combustion tests with a gas turbine combustor were carried out to clarify the technical problems caused when liquefied butane was supplied and burned in the liquid phase in addition to evaluating methanol and liquefied butane as an alternative fuel. For methanol, a conventional dual-orifice type fuel injector, and for liquefied butane, the same dual-orifice type injector and two types of multi-hole injectors were tested. The results of combustion tests with both fuels were compared with those of conventional gas turbine fuels — kerosene and natural gas with respect to combustion performances and exhaust emissions. It was found that both fuels had some advantages over conventional fuels.

Author(s):  
K. O. Smith ◽  
A. Fahme

Three subscale, cylindrical combustors were rig tested on natural gas at typical industrial gas turbine operating conditions. The intent of the testing was to determine the effect of combustor liner cooling on NOx and CO emissions. In order of decreasing liner cooling, a metal louvre-cooled combustor, a metal effusion-cooled combustor, and a backside-cooled ceramic (CFCC) combustor were evaluated. The three combustors were tested using the same lean-premixed fuel injector. Testing showed that reduced liner cooling produced lower CO emissions as reaction quenching near the liner wall was reduced. A reduction in CO emissions allows a reoptimization of the combustor air flow distribution to yield lower NOx emissions.


Author(s):  
Carmine Russo ◽  
Giulio Mori ◽  
Vyacheslav V. Anisimov ◽  
Joa˜o Parente

Chemical Reactor Modelling approach has been applied to evaluate exhaust emissions of the newly designed ARI100 (Patent Pending) recuperated micro gas turbine combustor developed by Ansaldo Ricerche SpA. The development of the chemical reactor network has been performed based on CFD reacting flow analysis, obtained with a global 2-step reaction mechanism, applying boundary conditions concerning the combustion chamber at atmospheric pressure, with 100% of thermal load and fuelled with natural gas. The network consists of 11 ideal reactors: 6 perfectly stirred reactors, and 5 plug flow reactors, including also 13 mixers and 12 splitters. Simulations have been conducted using two detailed reaction mechanisms: GRI Mech 3.0 and Miller & Bowman reaction mechanisms. Exhaust emissions have been evaluated at several operating conditions, obtained at different pressure, and considering different fuel gases, as natural gas and a high H2 content SYNGAS fuel. Furthermore, emissions at different thermal loads have been investigated when natural gas at atmospheric pressure is fuelled. Simulation results have been compared with those obtained from combustion experimental campaign. CO and NOx emissions predicted with CRM approach closely match experimental results at representative operating conditions. Ongoing efforts to improve the proposed reactors network should allow extending the range of applicability to those operating conditions whose simulation results are not completely satisfying. Given the small computational effort required, and the accuracy in predicting combustor experimental exhaust emissions, both CO and NOx, the CRM approach turnout to be an efficient way to reasonably evaluate exhaust emissions of a micro gas turbine combustor.


Author(s):  
Y. Ozawa ◽  
J. Hirano ◽  
M. Sato ◽  
M. Saiga ◽  
S. Watanabe

Catalytic combustion is an ultra low NOx combustion method, so it is expected that this method will be applied to gas turbine combustor. However, it is difficult to develop catalytic combustor because catalytic reliability at high temperature is still insufficient. To overcome this difficulty, we designed a catalytic combustor in which premixed combustion was combined. By this device, it is possible to obtain combustion gas at a combustion temperature of 1300°C while keeping the catalytic temperature below 1000°C. After performing preliminary tests using LPG, we designed two types of combustors for natural gas with a capacity equivalent to 1 combustor used in a 20MW–class multi–can type gas turbine. Combustion tests were conducted at atmospheric pressure using natural gas. As a result, it was confirmed that a combustor in which catalytic combustor segments were arranged alternately with premixing nozzles could achieve low NOx and high combustion efficiency in the range from 1000°C to 1300°C of the combustor exit gas temperature.


Author(s):  
Thormod Andersen ◽  
Hanne M. Kvamsdal ◽  
Olav Bolland

A concept for capturing and sequestering CO2 from a natural gas fired combined cycle power plant is presented. The present approach is to decarbonise the fuel prior to combustion by reforming natural gas, producing a hydrogen-rich fuel. The reforming process consists of an air-blown pressurised auto-thermal reformer that produces a gas containing H2, CO and a small fraction of CH4 as combustible components. The gas is then led through a water gas shift reactor, where the equilibrium of CO and H2O is shifted towards CO2 and H2. The CO2 is then captured from the resulting gas by chemical absorption. The gas turbine of this system is then fed with a fuel gas containing approximately 50% H2. In order to achieve acceptable level of fuel-to-electricity conversion efficiency, this kind of process is attractive because of the possibility of process integration between the combined cycle and the reforming process. A comparison is made between a “standard” combined cycle and the current process with CO2-removal. This study also comprise an investigation of using a lower pressure level in the reforming section than in the gas turbine combustor and the impact of reduced steam/carbon ratio in the main reformer. The impact on gas turbine operation because of massive air bleed and the use of a hydrogen rich fuel is discussed.


Author(s):  
Candy Hernandez ◽  
Vincent McDonell

Abstract Lean-premixed (LPM) gas turbines have been developed for stationary power generation in efforts to reduce emissions due to strict air quality standards. Lean-premixed operation is beneficial as it reduces combustor temperatures, thus decreasing NOx formation and unburned hydrocarbons. However, tradeoffs occur between system performance and turbine emissions. Efforts to minimize tradeoffs between stability and emissions include the addition of hydrogen to natural gas, a common fuel used in stationary gas turbines. The addition of hydrogen is promising for both increasing combustor stability and further reducing emissions because of its wide flammability limits allowing for lower temperature operation, and lack of carbon molecules. Other efforts to increase gas turbine stability include the usage of a non-lean pilot flame to assist in stabilizing the main flame. By varying fuel composition for both the main and piloted flows of a gas turbine combustor, the effect of hydrogen addition on performance and emissions can be systematically evaluated. In the present work, computational fluid dynamics (CFD) and chemical reactor networks (CRN) are created to evaluate stability (LBO) and emissions of a gas turbine combustor by utilizing fuel and flow rate conditions from former hydrogen and natural gas experimental results. With CFD and CRN analysis, the optimization of parameters between fuel composition and main/pilot flow splits can provide feedback for minimizing pollutants while increasing stability limits. The results from both the gas turbine model and former experimental results can guide future gas turbine operation and design.


Author(s):  
Jeffrey N. Phillips ◽  
Richard J. Roby

A screening level study has been carried out to examine the potential of using H2-enriched natural gas to improve the combustion performance of gas turbines. H2 has wider flammability limits and a higher flame speed than methane. Many previous studies have shown that when H2 is added to fuel, more efficient combustion and lower emissions will result. However, to date no commercial attempt has been made to improve the combustion performance of a natural gas-fired gas turbine by supplementing the fuel with H2. Four potential options for supplementing natural gas with H2 have been analyzed. Three of these options use the exhaust heat of the gas turbine either directly or indirectly to partially reform methane. The fourth option uses liquid H2 supplied from an industrial gas producer.


2005 ◽  
Vol 127 (2) ◽  
pp. 286-294 ◽  
Author(s):  
K. D. Brundish ◽  
M. N. Miller ◽  
C. W. Wilson ◽  
M. Jefferies ◽  
M. Hilton ◽  
...  

The objective of the work described in this paper was to identify a method of making measurements of the smoke particle size distribution within the sector of a gas turbine combustor, using a scanning mobility particle sizing (SMPS) analyzer. As well as gaining a better understanding of the combustion process, the principal reasons for gathering these data was so that they could be used as validation for computational fluid dynamic and chemical kinetic models. Smoke mass and gaseous emission measurements were also made simultaneously. A “water cooled,” gas sampling probe was utilized to perform the measurements at realistic operating conditions within a generic gas turbine combustor sector. Such measurements had not been previously performed and consequently initial work was undertaken to gain confidence in the experimental configuration. During this investigation, a limited amount of data were acquired from three axial planes within the combustor. The total number of test points measured were 45. Plots of the data are presented in two-dimensional contour format at specific axial locations in addition to axial plots to show trends from the primary zone to the exit of the combustor. Contour plots of smoke particle size show that regions of high smoke number concentration once formed in zones close to the fuel injector persist in a similar spatial location further downstream. Axial trends indicate that the average smoke particle size and number concentration diminishes as a function of distance from the fuel injector. From a technical perspective, the analytical techniques used proved to be robust. As expected, making measurements close to the fuel injector proved to be difficult. This was because the quantity of smoke in the region was greater than 1000mg/m3. It was found necessary to dilute the sample prior to the determination of the particle number concentration using SMPS. The issues associated with SMPS dilution are discussed.


Author(s):  
Waseem Nazeer ◽  
Kenneth Smith ◽  
Patrick Sheppard ◽  
Robert Cheng ◽  
David Littlejohn

The continued development of a low swirl injector for ultra-low NOx gas turbine applications is described. An injector prototype for natural gas operation has been designed, fabricated and tested. The target application is an annular gas turbine combustion system requiring twelve injectors. High pressure rig test results for a single injector prototype are presented. On natural gas, ultra-low NOx emissions were achieved along with low CO. A turndown of approximately 100°F in flame temperature was possible before CO emissions increased significantly. Subsequently, a set of injectors was evaluated at atmospheric pressure using a production annular combustor. Rig testing again demonstrated the ultra-low NOx capability of the injectors on natural gas. An engine test of the injectors will be required to establish the transient performance of the combustion system and to assess any combustor pressure oscillation issues.


Sign in / Sign up

Export Citation Format

Share Document