A New Method for Optimizing Friction Damping in Randomly Excited Systems

Author(s):  
T. M. Cameron ◽  
J. H. Griffin

A method is developed that can be used to calculate the stationary response of randomly excited nonlinear systems. The method iterates to obtain the fast Fourier transform of the system response, returning to the time domain at each iteration to take advantage of the ease in evaluating nonlinearities there. The updated estimates of the nonlinear terms are transformed back into the frequency domain in order to continue iterating on the frequency spectrum of the staionary response. This approach is used to calculate the response of a one degree of freedom system with friction damping that is subjected to random excitation. The one degree of freedom system provides a single mode approximation of systems (e.g. turbine blades) with friction damping. This study investigates various strategies that can be used to optimize the friction load so as to minimize the response of the system.

2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Stephen L. Canfield ◽  
Reabetswe M. Nkhumise

This paper develops an approach to evaluate a state-space controller design for mobile manipulators using a geometric representation of the system response in tool space. The method evaluates the robot system dynamics with a control scheme and the resulting response is called the controllability ellipsoid (CE), a tool space representation of the system’s motion response given a unit input. The CE can be compared with a corresponding geometric representation of the required motion task (called the motion polyhedron) and evaluated using a quantitative measure of the degree to which the task is satisfied. The traditional control design approach views the system response in the time domain. Alternatively, the proposed CE views the system response in the domain of the input variables. In order to complete the task, the CE must fully contain the motion polyhedron. The optimal robot arrangement would minimize the total area of the CE while fully containing the motion polyhedron. This is comparable to minimizing the power requirements of robot design when applying a uniform scale to all inputs. It will be shown that changing the control parameters changes the eccentricity and orientation of the CE, implying a preferred set of control parameters to minimize the design motor power. When viewed in the time domain, the control parameters can be selected to achieve desired stability and time response. When coupled with existing control design methods, the CE approach can yield robot designs that are stable, responsive, and minimize the input power requirements.


2021 ◽  
Vol 8 ◽  
pp. 57-68
Author(s):  
R.Yu. Borodulin ◽  
N.O. Lukyanov

Problem statement. The accuracy and convergence of calculations for solving problems of electrodynamics by the finite difference method in the time domain significantly depends on the correct choice of parameters and the correct setting of the absorbing boundary conditions (ABC). Two main types of absorbing boundary conditions are known: Mur ABC; Beranger ABC. It is believed that the Mur ABC is less effective at absorbing spherical waves than the Beranger ABC, but they do not require the introduction of additional parameters (the so-called "Beranger fields"), which simplifies the implementation of program code and saves computer RAM. Calculations have shown that the efficiency of the Mur ABC will depend on their thickness. On the one hand, an increase in the thickness of the ABC layers will lead to an increase in the accuracy of calculations, on the other hand, to an increase in the size of the calculation area and, as a result, an increase in RAM. The problem arises of determining the criterion for evaluating the efficiency of ABC to determine their optimal thickness. Goal. Identification of new factors that make it possible to use the Mur ABC as efficiently as the Beranger ABC, while significantly saving computer resources. Result. The expressions for the ABC are presented, taking into account the interaction of all components of the electromagnetic field within a single cell of the FDTD. Calculations of the reflection coefficient – a criterion for evaluating the efficiency of the ABC, are presented. Practical significance. Calculations are presented that allow automating the selection of ABC parameters for their stable operation in solving electrodynamic problems.


Author(s):  
Sang Woo Kim ◽  
Svein Sævik ◽  
Jie Wu

Abstract This paper addresses the performance evaluation of an empirical time domain Vortex Induced Vibrations (VIV) model which has been developed for several years at NTNU. Unlike the frequency domain which is the existing VIV analysis method, the time domain model introduces new vortex shedding force terms to the well known Morison equation. The extra load terms are based on the relative velocity, a synchronization model and additional empirical coefficients that describe the hydrodynamic forces due to cross-flow (CF) and In-line (IL) vortex shedding. These hydrodynamic coefficients have been tuned to fit experimental data and by considering the results from the one of existing frequency domain VIV programs, VIVANA, which is widely used for industrial design. The feature of the time domain model is that it enables to include the structural non-linearity, such as variable tension, and time-varying flow. The robustness of the new model’s features has been validated by comparing the test results in previous researches. However, the riser used in experiments has a relatively small length/diameter (L/D) ratio. It implies that there is a need for more validation to make it applicable to real riser design. In this study, the time domain VIV model is applied to perform correlation studies against the Hanøytangen experiment data for the case of linear sheared current at a large L/D ratio. The main comparison has been made with respect to the maximum fatigue damage and dominating frequency for each test condition. The results show the time domain model showed reasonable accuracy with respect to the experimental and VIVANA. The discrepancy with regard to experiment results needs to be further studied with a non-linear structural model.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. Q27-Q36 ◽  
Author(s):  
Lele Zhang ◽  
Jan Thorbecke ◽  
Kees Wapenaar ◽  
Evert Slob

We have developed a scheme that retrieves primary reflections in the two-way traveltime domain by filtering the data. The data have their own filter that removes internal multiple reflections, whereas the amplitudes of the retrieved primary reflections are compensated for two-way transmission losses. Application of the filter does not require any model information. It consists of convolutions and correlations of the data with itself. A truncation in the time domain is applied after each convolution or correlation. The retrieved data set can be used as the input to construct a better velocity model than the one that would be obtained by working directly with the original data and to construct an enhanced subsurface image. Two 2D numerical examples indicate the effectiveness of the method. We have studied bandwidth limitations by analyzing the effects of a thin layer. The presence of refracted and scattered waves is a known limitation of the method, and we studied it as well. Our analysis indicates that a thin layer is treated as a more complicated reflector, and internal multiple reflections related to the thin layer are properly removed. We found that the presence of refracted and scattered waves generates artifacts in the retrieved data.


2021 ◽  
Author(s):  
Gong Xiao-long ◽  
Cao Shuo ◽  
Yue Fang ◽  
Liu Tong-Hua

Abstract Realistic quantum systems always exhibit gravitational and relativistic features. In this paper, we investigate the properties of Gaussian steering and its asymmetry by the localized two-mode Gaussian quantum states, instead of the traditional single-mode approximation method in the relativistic setting. We find that the one-side Gaussian quantum steering will monotonically decrease with increasing observers of acceleration. Meanwhile, our results also reveal the interesting behavior of the Gaussian steering asymmetry, which increases for a specific range of accelerated parameter and then gradually approaches to a finite value. Such findings is well consistent and explained by the well-known Unruh effect, which could significantly destroy the one-side Gaussian quantum steering. Finally, our results could also be applied to the dynamical studies of Gaussian steering between the Earth and satellites, since the effects of acceleration is equal to the effects of gravity according to the equivalence principle.


1967 ◽  
Vol 63 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. S. Dunn

AbstractAn integral transformation is denned over a finite interval of the time domain. When the Laplace transform exists, the finite transform yields identical results. However, the finite transform is found to be considerably more general than the Laplace transform. It permits consideration of functions which are not of exponential order, leads to a simple scheme to determine system response, and is applicable to boundary-value problems.


1998 ◽  
Vol 12 (11) ◽  
pp. 1135-1146
Author(s):  
Alejandro Cabo ◽  
Aurora Pérez Martínez

We consider the Bethe Salpeter Equation (BSE) for a fractionally filled Landau level. A phenomenological discussion of the 1/3 Laughlin's state is performed by assuming an ansatz for the one-particle propagator. The BSE is solved in this approach and it predicts an instability under the formation of charge density oscillations for a wide range of the one-particle gap parameter values in contrast with previous single mode approximation results. However, the conclusion is compatible with the one obtained within a composite fermion description done by us before and with the saturation of the zero momentum oscillator strength sum rule by the cyclotronic resonance. Further studies should be done in order to understand the discrepancy.


2012 ◽  
Vol 178-181 ◽  
pp. 1438-1441
Author(s):  
Li Hua Wang ◽  
Guang Wei Liu ◽  
An Ning Huang ◽  
Ya Yu Huang

With the large-scale speed-up of the railway, the dynamic track stabilizer will play an important role on the track overhauling and railroading of new line in our country. Bogie is one of the major critical components of the dynamic track stabilizer; its vibrating characteristic will affect the vibrating characteristic of the dynamic track stabilizer directly. The method of numerical simulate was used, based on the spectral density of the track irregularities, the time domain loads of the track irregularities were gained. Then the vibrating characteristics of the dynamic track stabilizer bogie under the excitation of the track irregularities were analyzed on the bases of the ANSYS/LS-DYNA. And the lateral, dilation, ups and downs, nod, swing and anti-rolling vibrating characteristics of the bogie on the six degree of freedom were obtained. The analysis results of this paper will provide foundation for the research on the stationarity and security of the dynamic track stabilizer.


Sign in / Sign up

Export Citation Format

Share Document