scholarly journals Computation of 3D Flow Phenomena in Axial Flow Compressor Blade Rows

1991 ◽  
Author(s):  
M. Janssen ◽  
H.-J. Dohmen ◽  
K. G. Grahl

The main subject of the present publication is the comparison of results achieved with a 3D-partially parabolic calculation procedure and experimental data for the three dimensional flow in stationary and rotating blade rows of axial flow compressors. To set up the numerical solution procedure, the Navier-Stokes Equations are written in finite difference form by applying the control-volume approach. The turbulent flow effects are taken into account by using the standard k—ε model for the calculation of the turbulent viscosity. For precisely introducing the boundary conditions for arbitrary geometries, the differential equations are transformed to a body-fitted coordinate system by a very simple method. To construct the physical mesh, the nonorthogonal curvilinear coordinates are taken as solutions of a suitable elliptic boundary value problem. The abilities of the developed computer program are shown by comparing experimental and numerical results for three applications. The first, most simple case deals with the flow development in an isolated, stationary blade row of cylindrical blades and uniform boundary conditions upstream of the blade row. A more complex flow is regarded by calculating the flow field through highly turned, custom tailored airfoils working in a multistage environment. The flow conditions upstream of the flow domain under consideration show a well developed end wall boundary layer at the hub, leading to a strongly skewed inflow due to the superimposed tangential velocity component of the rotor upstream. The third application regards the flow development in a rotating axial compressor blade row in which the complexity of the flow field increases by flow effects that are due to centrifugal and Coriolis forces. The comparisons between experimental and numerical results show good agreements for all applications.

1978 ◽  
Vol 45 (4) ◽  
pp. 812-816 ◽  
Author(s):  
B. S. Berger ◽  
B. Alabi

A solution has been derived for the Navier equations in orthogonal cylindrical curvilinear coordinates in which the axial variable, X3, is suppressed through a Fourier transform. The necessary coordinate transformation may be found either analytically or numerically for given geometries. The finite-difference forms of the mapped Navier equations and boundary conditions are solved in a rectangular region in the curvilinear coordinaties. Numerical results are given for the half space with various surface shapes and boundary conditions in two and three dimensions.


Author(s):  
Rolf Emunds ◽  
Ian K. Jennions ◽  
Dieter Bohn ◽  
Jochen Gier

This paper deals with the numerical simulation of flow through a 1.5 stage axial flow turbine. The 3-row configuration has been experimentally investigated at the University of Aachen where measurements behind the first vane, the first stage and the full configuration were taken. These measurements allow single blade row computations, to the measured boundary conditions taken from complete engine experiments, or full multistage simulations. The results are openly available inside the framework of ERCOFTAC 1996. There are two separate but interrelated parts to the paper. Firstly, two significantly different Navier-Stokes codes are used to predict the flow around the first vane and the first rotor, both running in isolation. This is used to engender confidence in the code that is subsequently used to model the multiple bladerow tests, the other code is currently only suitable for a single blade row. Secondly, the 1.5 stage results are compared to the experimental data and promote discussion of surrounding blade row effects on multistage solutions.


Author(s):  
J. D. Denton ◽  
L Xu

Many of the phenomena involved in turbomachinery flow can be understood and predicted on a two-dimensional (2D) or quasi-three-dimensional (Q3D) basis, but some aspects of the flow must be considered as fully three-dimensional (3D) and cannot be understood or predicted by the Q3D approach. Probably the best known of these fully 3D effects is secondary flow, which can only be predicted by a fully 3D calculation which includes the vorticity at inlet to the blade row. It has long been recognized that blade sweep and lean also produce fully 3D effects and approximate methods of calculating these have been developed. However, the advent of fully 3D flow field calculation methods has made predictions of these complex effects much more readily available and accurate so that they are now being exploited in design. This paper will attempt to describe and discuss fully 3D flow effects with particular reference to their use to improve turbomachine performance. Although the discussion is restricted to axial flow machines, many of the phenomena discussed are equally applicable to mixed and radial flow turbines and compressors.


1997 ◽  
Vol 119 (4) ◽  
pp. 723-732 ◽  
Author(s):  
W. G. Joo ◽  
T. P. Hynes

This paper describes the development of actuator disk models to simulate the asymmetric flow through high-speed low hub-to-tip ratio blade rows. The actuator disks represent boundaries between regions of the flow in which the flow field is solved by numerical computation. The appropriate boundary conditions and their numerical implementation are described, and particular attention is paid to the problem of simulating the effect of blade row blockage near choking conditions. Guidelines on choice of axial position of the disk are reported. In addition, semi-actuator disk models are briefly described and the limitations in the application of the model to supersonic flow are discussed.


2020 ◽  
Vol 12 (3) ◽  
pp. 325-329
Author(s):  
Mohsen Rostami ◽  
Mohammad Saleh Abadi

The effects of the angular position on the flow and heat transfer of the nanofluid in a triangular cavity is investigated numerically. A triangular cavity is chosen with the same boundary conditions as the published results are available. The comparison between the current numerical results with the available data is made to show the accuracy of the numerical simulation. The current structure of triangular cavity is rotated to investigate the effects of various angular positions on the flow and heat transfer characteristics of nanofluid. For this purpose, the equations of continuity, momentum and energy are solved numerically. The results show that the hot fluid is more freely penetrated into the domain by increasing of the angular position. The velocity of fluid in the flow field becomes maximum for the angle of 120 . Also, the creation of vortices in the flow field depends on the value of angular position.


1996 ◽  
Vol 118 (1) ◽  
pp. 73-80 ◽  
Author(s):  
W. M. Ko¨nig ◽  
D. K. Hennecke ◽  
L. Fottner

New blading concepts as used in modern transonic axial-flow compressors require improved loss and deviation angle correlations. The new model presented in this paper incorporates several elements and treats blade-row flows having subsonic and supersonic inlet conditions separately. In the first part of this paper two proved and well-established profile loss correlations for subsonic flows are extended to quasi-two-dimensional conditions and to custom-tailored blade designs. Instead of a deviation angle correlation, a simple method based on singularities is utilized. The comparison between the new model and a recently published model demonstrates the improved accuracy in prediction of cascade performance achieved by the new model.


Author(s):  
V. S. P. Chaluvadi ◽  
A. I. Kalfas ◽  
H. P. Hodson

This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Half-delta wings were fixed to a rotating hub to simulate an upstream rotor passage vortex. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. The paper examines the impact of the delta wing vortex transport on the performance of the downstream blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. The loss measurements at the exit of the stator blade showed an increase in stagnation pressure loss due to the delta wing vortex transport. The increase in loss was 21% of the datum stator loss, demonstrating the importance of this vortex interaction. The transport of the stator viscous flow through the rotor blade row is also described. The rotor exit flow was affected by the interaction between the enhanced stator passage vortex and the rotor blade row. Flow underturning near the hub and overturning towards the mid-span was observed, contrary to the classical model of overturning near the hub and underturning towards the mid-span. The unsteady numerical simulation results were further analysed to identify the entropy producing regions in the unsteady flow field.


Author(s):  
C Vafidis ◽  
J H Whitelaw

Measurements of three velocity components have been obtained by laser Doppler anemometry at the exit plane of the intake valve and inside the cylinder of a model engine motored at 200 r/min with a compression ratio of 7.7 and both axisymmetric and off-centre valves with flat and bowl-in-piston configurations. The results indicate that during early intake the valve flow is influenced by piston geometry and its proximity to the cylinder head. With the flat piston the TDC flow field is influenced by the intake-generated axial flow pattern but not by the tangential motion, induced by the off-centre valve, which decays around inlet valve closure. The breakdown of the intake-generated vortices is accompanied by redistribution of the normal stresses which, during compression, tend towards homogeneity. Inside the piston bowl, a vortex is induced during early intake and decays later in the induction stroke to a uniform flow field which is transformed during late compression by the squish effect.


2003 ◽  
Vol 125 (1) ◽  
pp. 14-24 ◽  
Author(s):  
V. S. P. Chaluvadi ◽  
A. I. Kalfas ◽  
H. P. Hodson ◽  
H. Ohyama ◽  
E. Watanabe

This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Compound lean angles have been employed to achieve relatively low blade loading for hub and tip sections and so reduce the secondary losses. The flow field is investigated in a low-speed research turbine using pneumatic and hot-wire probes downstream of the blade row. Steady and unsteady numerical simulations were performed using structured 3-D Navier-Stokes solver to further understand the flow field. Agreement between the simulations and the measurements has been found. The unsteady measurements indicate that there is a significant effect of the stator flow interaction in the downstream rotor blade. The transport of the stator viscous flow through the rotor blade row is described. Unsteady numerical simulations were found to be successful in predicting accurately the flow near the secondary flow interaction regions compared to steady simulations. A method to calculate the unsteady loss generated inside the blade row was developed from the unsteady numerical simulations. The contribution of various regions in the blade to the unsteady loss generation was evaluated. This method can assist the designer in identifying and optimizing the features of the flow that are responsible for the majority of the unsteady loss production. An analytical model was developed to quantify this effect for the vortex transport inside the downstream blade.


Sign in / Sign up

Export Citation Format

Share Document