scholarly journals The Use of Imposed Displacements to Determine Impact Forces in a Multiple Blade Shed Incident

Author(s):  
T. B. Dewhurst ◽  
P. Tang

Experimental data from a multiple blade shed incident is used to determine the forces exerted by the blades on a containment ring. A transient, dynamic, finite element procedure is used to model the ring during the blade shed. This work focuses on the selection of the proper numerical parameters that lead to a stable and accurate numerical solution while maintaining physical reality. Examination of the degree of implicitness and various measures of damping, as well as incorporation of large displacement algorithms, has lead to a simulation that successfully determines the forces on the ring. Accurate determination of these forces is necessary for optimal design of containment systems.

1995 ◽  
Vol 117 (3) ◽  
pp. 600-605 ◽  
Author(s):  
T. B. Dewhurst ◽  
P. Tang

Experimental data from a multiple blade shed incident are used to determine the forces exerted by the blades on a containment ring. A transient, dynamic, finite element procedure is used to model the ring during the blade shed. This work focuses on the selection of the proper numerical parameters that lead to a stable and accurate numerical solution while maintaining physical reality. Examination of the degree of implicitness and various measures of damping, as well as incorporation of large displacement algorithms, has lead to a simulation that successfully determines the forces on the ring. Accurate determination of these forces is necessary for optimal design of containment systems.


2020 ◽  
Vol 835 ◽  
pp. 229-242
Author(s):  
Oboso P. Bernard ◽  
Nagih M. Shaalan ◽  
Mohab Hossam ◽  
Mohsen A. Hassan

Accurate determination of piezoelectric properties such as piezoelectric charge coefficients (d33) is an essential step in the design process of sensors and actuators using piezoelectric effect. In this study, a cost-effective and accurate method based on dynamic loading technique was proposed to determine the piezoelectric charge coefficient d33. Finite element analysis (FEA) model was developed in order to estimate d33 and validate the obtained values with experimental results. The experiment was conducted on a piezoelectric disc with a known d33 value. The effect of measuring boundary conditions, substrate material properties and specimen geometry on measured d33 value were conducted. The experimental results reveal that the determined d33 coefficient by this technique is accurate as it falls within the manufactures tolerance specifications of PZT-5A piezoelectric film d33. Further, obtained simulation results on fibre reinforced and particle reinforced piezoelectric composite were found to be similar to those that have been obtained using more advanced techniques. FE-results showed that the measured d33 coefficients depend on measuring boundary condition, piezoelectric film thickness, and substrate material properties. This method was proved to be suitable for determination of d33 coefficient effectively for piezoelectric samples of any arbitrary geometry without compromising on the accuracy of measured d33.


2021 ◽  
Author(s):  
Wassim Habchi ◽  
Philippe Vergne

Abstract The current work presents a quantitative approach for the prediction of minimum film thickness in elastohydrodynamic lubricated (EHL) circular contacts. In contrast to central film thickness, minimum film thickness can be hard to accurately measure, and it is usually poorly estimated by classical analytical film thickness formulae. For this, an advanced finite-element-based numerical model is used to quantify variations of the central-to-minimum film thickness ratio with operating conditions, under isothermal Newtonian pure-rolling conditions. An ensuing analytical expression is then derived and compared to classical film thickness formulae and to more recent similar expressions. The comparisons confirmed the inability of the former to predict the minimum film thickness, and the limitations of the latter, which tend to overestimate the ratio of central-to-minimum film thickness. The proposed approach is validated against numerical results as well as experimental data from the literature, revealing an excellent agreement with both. This framework can be used to predict minimum film thickness in circular elastohydrodynamic contacts from knowledge of central film thickness, which can be either accurately measured or rather well estimated using classical film thickness formulae.


1983 ◽  
Vol 27 (04) ◽  
pp. 281-285
Author(s):  
K. Rajagopalan ◽  
C. Ganapathy Chettiar

A finite-element procedure for the determination of buckling pressure of thin-walled cylindrical shells used in ocean structures is presented. The derivation of the elastic and geometric stiffness matrices is discussed in detail followed by a succinct description of the computer program developed by the authors during the course of this study for the determination of the buckling pressure. Particular attention is paid to the boundary conditions which strongly influence the buckling pressure. Applications involving the interstiffener buckling in submersible hulls and cylindrical shells with stepwise variation in wall thickness are considered and the results compared with the solutions and procedures available in the literature.


1988 ◽  
Vol 61 (5) ◽  
pp. 879-891 ◽  
Author(s):  
Robert H. Finney ◽  
Alok Kumar

Abstract The determination of the material coefficients for Ogden, Mooney-Rivlin, Peng, and Peng-Landel material models using simple ASTM D 412 tensile data is shown to be a manageable task. The application of the various material models are shown to be subject to the type and level of deformation expected, with Ogden showing the best correlation with experimental data over a large strain range for the three types of strain investigated. At low strains, all of the models showed reasonable correlation.


Sign in / Sign up

Export Citation Format

Share Document