scholarly journals Observations of Flame Behavior From a Practical Fuel Injector Using Gaseous Fuel in a Technology Combustor

Author(s):  
Paul O. Hedman ◽  
Geoffrey J. Sturgess ◽  
David L. Warren ◽  
Larry P. Goss ◽  
Dale T. Shouse

This paper presents results from an Air Force program being conducted by researchers at Brigham Young University (BYU) Wright-Patterson Air Force Base (WPAFB), and Pratt and Whitney Aircraft Co (P&W). This study is part of a comprehensive effort being supported by the Aero Propulsion and Power Laboratory at Wright-Patterson Air Force Base, and Pratt and Whitney Aircraft, Inc. in which simple and complex diffusion flames are being studied to better understand the fundamentals of gas turbine combustion near lean blowout. The program’s long term goal is to improve the design methodology of gas turbine combustors. This paper focuses on four areas of investigation: 1) digitized images from still film photographs to document the observed flame structures as fuel equivalence ratio was varied, 2) sets of LDA data to quantify the velocity flow fields existing in the burner, 3) CARS measurements of gas temperature to determine the temperature field in the combustion zone, and to evaluate the magnitude of peak temperature, and 4) two-dimensional images of OH radical concentrations using PLIF to document the instantaneous location of the flame reaction zones.

1995 ◽  
Vol 117 (3) ◽  
pp. 441-452 ◽  
Author(s):  
P. O. Hedman ◽  
G. J. Sturgess ◽  
D. L. Warren ◽  
L. P. Goss ◽  
D. T. Shouse

This paper presents results from an Air Force program being conducted by researchers at Brigham Young University (BYU) Wright-Patterson Air Force Base (WPAFB), and Pratt and Whitney (P&W). This study is part of a comprehensive effort being supported by the Aero Propulsion and Power Laboratory at Wright-Patterson Air Force Base, and Pratt and Whitney in which simple and complex diffusion flames are being studied to understand better the fundamentals of gas turbine combustion near lean blowout. The program’s long-term goal is to improve the design methodology of gas turbine combustors. This paper focuses on four areas of investigation: (1) digitized images from still film photographs to document the observed flame structures as fuel equivalence ratio was varied, (2) sets of LDA data to quantify the velocity flow fields existing in the burner (3) CARS measurements of gas temperature to determine the temperature field in the combustion zone, and to evaluate the magnitude of peak temperature, and (4) two-dimensional images of OH radical concentrations using PLIF to document the instantaneous location of the flame reaction zones.


1997 ◽  
Vol 119 (2) ◽  
pp. 352-361 ◽  
Author(s):  
D. L. Warren ◽  
P. O. Hedman

This paper presents further analysis of experimental results from an Air Force program conducted by researchers at Brigham Young University (BYU), Wright-Patterson Air Force Base (WPAFB), and Pratt and Whitney Aircraft Co. (P&W) (Hedman et al., 1994a, 1995). These earlier investigations of the combustion of propane in a practical burner installed in a technology combustor used: (1) digitized images from video and still film photographs to document observed flame behavior as fuel equivalence ratio was varied, (2) sets of LDA data to quantify the velocity flow fields existing in the burner, (3) CARS measurements of gas temperature to determine the temperature field in the combustion zone, and to evaluate the magnitude of peak temperature, and (4) two-dimensional PLIF images of OH radical concentrations to document the instantaneous location of the flame reaction zones. This study has used the in situ velocity and temperature measurements from the earlier study, suitably interpolated, to determine local mass and energy balances on differential volume elements throughout the flame zone. The differential mass balance was generally within about ±10 percent with some notable exceptions near regions of very high shear and mixing. The local differential energy balance has qualitatively identified the regions of the flame where the major heat release is occurring, and has provided quantitative values on the rate of energy release (up to −400 kJ/m3s). The velocity field data have also been used to determine Lagrangian pathlines through the flame zone. The local velocity and temperature along selected pathlines have allowed temperature timelines to be determined. The temperature generally achieves its peak value, often near the adiabatic flame temperature, within about 10 ms. These temperature timelines, along with the quantitative heat release data, may provide a basis for evaluating kinetic combustion models.


Author(s):  
David L. Warren ◽  
Paul O. Hedman

This paper presents further analysis of experimental results from an Air Force program conducted by researchers at Brigham Young University (BYU) Wright-Patterson Air Force Base (WPAFB), and Pratt and Whitney Aircraft Co. (P&W) (Hedman, et al., 1994a and 1994b). These earlier investigations of the combustion of propane in a practical burner installed in a technology combustor used: 1) digitized images from video and still film photographs to document observed flame behavior as fuel equivalence ratio was varied, 2) sets of LDA data to quantify the velocity flow fields existing in the burner, 3) CARS measurements of gas temperature to determine the temperature field in the combustion zone, and to evaluate the magnitude of peak temperature, and 4) two-dimensional PLIF images of OH radical concentrations to document the instantaneous location of the flame reaction zones. This study has used the in situ velocity and temperature measurements from the earlier study, suitably interpolated, to determine local mass and energy balances on differential volume elements throughout the flame zone. The differential mass balance was generally within about ± 10% with some notable exceptions near regions of very high shear and mixing. The local differential energy balance has qualitatively identified the regions of the flame where the major heat release is occurring, and has provided quantitative values on the rate of energy release (up to −400 kJ/m3s). The velocity field data have also been used to determine Lagrangian pathlines through the flame zone. The local velocity and temperature along selected pathlines have allowed temperature timelines to be determined. The temperature generally achieves its peak value, often near the adiabatic flame temperature, within about 10 ms. These temperature timelines, along with the quantitative heat release data may provide a basis for evaluating kinetic combustion models.


1981 ◽  
Vol 103 (1) ◽  
pp. 34-42 ◽  
Author(s):  
J. R. Shekleton

The Radial Engine Division of Solar Turbines International, an Operating Group of International Harvester, under contract to the U.S. Army Mobility Equipment Research & Development Command, developed and qualified a 10 kW gas turbine generator set. The very small size of the gas turbine created problems and, in the combustor, novel solutions were necessary. Differing types of fuel injectors, combustion chambers, and flame stabilizing methods were investigated. The arrangement chosen had a rotating cup fuel injector, in a can combustor, with conventional swirl flame stabilization but was devoid of the usual jet stirred recirculation. The use of centrifugal force to control combustion conferred substantial benefit (Rayleigh Instability Criteria). Three types of combustion processes were identified: stratified and unstratified charge (diffusion flames) and pre-mix. Emphasis is placed on five nondimensional groups (Richardson, Bagnold, Damko¨hler, Mach, and Reynolds numbers) for the better control of these combustion processes.


1997 ◽  
Vol 119 (1) ◽  
pp. 34-44 ◽  
Author(s):  
N. K. Rizk ◽  
J. S. Chin ◽  
M. K. Razdan

Satisfactory performance of the gas turbine combustor relies on the careful design of various components, particularly the fuel injector. It is, therefore, essential to establish a fundamental basis for fuel injection modeling that involves various atomization processes. A two-dimensional fuel injection model has been formulated to simulate the airflow within and downstream of the atomizer and address the formation and breakup of the liquid sheet formed at the atomizer exit. The sheet breakup under the effects of airblast, fuel pressure, or the combined atomization mode of the airassist type is considered in the calculation. The model accounts for secondary breakup of drops and the stochastic Lagrangian treatment of spray. The calculation of spray evaporation addresses both droplet heat-up and steady-state mechanisms, and fuel vapor concentration is based on the partial pressure concept. An enhanced evaporation model has been developed that accounts for multicomponent, finite mass diffusivity and conductivity effects, and addresses near-critical evaporation. The presents investigation involved predictions of flow and spray characteristics of two distinctively different fuel atomizers under both nonreacting and reacting conditions. The predictions of the continuous phase velocity components and the spray mean drop sizes agree well with the detailed measurements obtained for the two atomizers, which indicates the model accounts for key aspects of atomization. The model also provides insight into ligament formation and breakup at the atomizer exit and the initial drop sizes formed in the atomizer near field region where measurements are difficult to obtain. The calculations of the reacting spray show the fuel-rich region occupied most of the spray volume with two-peak radial gas temperature profiles. The results also provided local concentrations of unburned hydrocarbon (UHC) and carbon monoxide (CO) in atomizer flowfield, information that could support the effort to reduce emission levels of gas turbine combustors.


Author(s):  
Robert G. Laycock ◽  
Thomas H. Fletcher

Time-dependent deposition characteristics of fine coal flyash were measured in the Turbine Accelerated Deposition Facility (TADF) at Brigham Young University. Two samples of subbituminous coal fly ash, with mass mean diameters of 3 and 13 μm, were entrained in a hot gas flow with a gas temperature of 1250°C and Mach number of 0.25. A nickel base super alloy metal coupon approximately 0.3 cm thick was held in a hot particle-laden gas stream to simulate deposition in a gas turbine. Tests were conducted with deposition times of 20, 40, and 60 minutes. Capture efficiencies and surface roughness characteristics (e.g., Ra) were obtained at different times. Capture efficiency increased exponentially with time while Ra increased linearly with time. The increased deposition with time caused the surface temperature of the deposit to increase. The increased surface temperature caused more softening, increasing the propensity for impacting particles to stick to the surface. These data are important for improving models of deposition in turbines from syngas flows.


Author(s):  
N. K. Rizk ◽  
J. S. Chin ◽  
M. K. Razdan

Satisfactory performance of the gas turbine combustor relies on the careful design of various components, particularly the fuel injector. It is, therefore, essential to establish a fundamental basis for fuel injection modeling that involves various atomization processes. A 2-D fuel injection model has been formulated to simulate the airflow within and downstream of the atomizer and address the formation and breakup of the liquid sheet formed at the atomizer exit. The sheet breakup under the effects of airblast, fuel pressure, or the combined atomization mode of the air-assist type is considered in the calculation. The model accounts for secondary breakup of drops and the stochastic Lagrangian treatment of spray. The calculation of spray evaporation addresses both droplet heat-up and steady-state mechanisms, and fuel vapor concentration is based on partial pressure concept. An enhanced evaporation model has been developed that accounts for multicomponent, finite mass diffusivity and conductivity effects, and addresses near critical evaporation. The present investigation involved predictions of flow and spray characteristics of two distinctively different fuel atomizers under both nonreacting and reacting conditions. The predictions of the continuous phase velocity components and the spray mean drop sizes agree well with the detailed measurements obtained for the two atomizers, which indicates the model accounts for key aspects of atomization. The model also provides insight into ligament formation and breakup at the atomizer exit and the initial drop sizes formed in the atomizer near field region where measurements are difficult to obtain. The calculations of the reacting spray show the fuel rich region occupied most of the spray volume with two-peak radial gas temperature profiles. The results also provided local concentrations of unburned hydrocarbon (UHC) and carbon monoxide (CO) in atomizer flowfield, information that could support the effort to reduce emission levels of gas turbine combustors.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kirubakaran V. ◽  
Naren Shankar R.

Purpose This paper aims to predict the effect of combustor inlet area ratio (CIAR) on the lean blowout limit (LBO) of a swirl stabilized can-type micro gas turbine combustor having a thermal capacity of 3 kW. Design/methodology/approach The blowout limits of the combustor were predicted predominantly from numerical simulations by using the average exit gas temperature (AEGT) method. In this method, the blowout limit is determined from characteristics of the average exit gas temperature of the combustion products for varying equivalence. The CIAR value considered in this study ranges from 0.2 to 0.4 and combustor inlet velocities range from 1.70 to 6.80 m/s. Findings The LBO equivalence ratio decreases gradually with an increase in inlet velocity. On the other hand, the LBO equivalence ratio decreases significantly especially at low inlet velocities with a decrease in CIAR. These results were backed by experimental results for a case of CIAR equal to 0.2. Practical implications Gas turbine combustors are vulnerable to operate on lean equivalence ratios at cruise flight to avoid high thermal stresses. A flame blowout is the main issue faced in lean operations. Based on literature and studies, the combustor lean blowout performance significantly depends on the primary zone mass flow rate. By incorporating variable area snout in the combustor will alter the primary zone mass flow rates by which the combustor will experience extended lean blowout limit characteristics. Originality/value This is a first effort to predict the lean blowout performance on the variation of combustor inlet area ratio on gas turbine combustor. This would help to extend the flame stability region for the gas turbine combustor.


2020 ◽  
Vol 37 (4) ◽  
pp. 343-352
Author(s):  
P. Maran ◽  
S. Boopathi ◽  
P. Gowtham ◽  
S. Chidambaram

AbstractIn the present work, LBO limits for methane-air combustion stabilized by a V-Gutter have been predicted by a hybrid method using numerical simulation and empirical relations. The numerical simulations have been carried out to study the stable methane-air combustion and temperature gradients at exit and recirculation region in a model gas turbine afterburner with a planar V-Gutter as a bluff body for four inlet air pressure conditions and three V-Gutter angles. The calculated average exit gas temperature (AEGT) and the average gas temperature in recirculation region have been used for predicting the blowout conditions. An empirical method based on Feature Section Criterion has been used to determine Fuel-Air Ratio (FAR) at blowout conditions very accurately from the numerically calculated average temperature in the central recirculation zone (CRZ).The predicted Fuel-Air Ratio (FAR) at lean blowout conditions has been compared with the experimental results obtained for the same conditions and are found to be in good agreement.


Author(s):  
Stephan E. Schmidt ◽  
Paul O. Hedman

This paper present results from a research program being conducted at the Advanced Combustion Engineering Research Center (ACERC) at Brigham Young University (BYU). This study is part of a comprehensive effort supported by the Advanced Gas Turbine Systems Research (ATS) Program headquartered at the South Carolina Energy Research and Development Center, Clemson, South Carolina. The objective of this study was to characterize a turbulent premixed propane/air flame in a model combustor that simulates the characteristics of a utility gas turbine engine. The program’s long term goal is to develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. This paper focuses on the following four areas of the investigation: 1) a series of digitized video images to document the effect of fuel equivalence ratio and swirl number on flame structure, 2) LDA velocity measurements to quantify the flow structure, 3) CARS gas temperature measurements to determine the temperature field in the combustor, and 4) local continuity and energy release in differential elements throughout the flame zone.


Sign in / Sign up

Export Citation Format

Share Document