Two Precision Position Synthesis of Planar Linkages With Positional Rectification

Author(s):  
John A. Mirth

Abstract Precision position synthesis is used to generate planar linkages that pass through two exact positions and an additional number of approximate positions. The approximate positions provide a means of rectifying the solution linkages such that all solutions presented are more likely to describe a motion that remains within acceptable positional bounds. The rectification method involves the development of three different numerical algorithms that may be applied to a particular step in the dyad/triad method of precision position synthesis. The three algorithms presented can be applied in a variety of combinations to allow for the synthesis of both simple (four-bar) and complex (multiloop) planar linkages.

Author(s):  
John A. Mirth

Abstract Mechanisms seldom need to pass through more than one or two exact positions. The method of quasi-position synthesis combines a number of approximate or “quasi” positions with two exact positions to design four-bar linkages that will produce a specified, bounded motion. Quasi-position synthesis allows for the optimization of some linkage characteristic (such as link lengths or transmission angles) by using the three variables that describe a single quasi-position. Procedures for circuit and transmission angle rectification are also easily incorporated into the quasi-position synthesis method.


Author(s):  
John A. Mirth

Abstract This paper introduces the method of quasi-precision position synthesis for planar linkages. A quasi-precision position is defined by an approximate region that the mechanism must pass through. The quasi-precision position problem specification generates an increased design region by not requiring the accurate position specification that is characteristic of optimization and precision position methods. The design space is generated by intersecting the individual design regions of different four position sets. Each four position set consists of three exact positions plus one quasi-precision position. The method allows for the use of any number of quasi-precision positions. The result of using quasi-precision positions is an increase in the available design space without violating the basic problem constraints. The increased solution region gives the designer a greater variety of choices while reducing the number of required design iterations. The complete process of quasi-precision position synthesis is presented through the use of an example.


Author(s):  
John A. Mirth

Abstract Quasi positions describe portions of a mechanism’s motion that do not require an exact position. Quasi positions are combined with three exact positions to define a two-dimensional design plane for the synthesis of planar linkages. Quasi-precision position synthesis is based on precision position techniques. The method preserves the computational advantages of precision position synthesis with the added advantage of being able to specify a much greater number of design positions.


1999 ◽  
Vol 121 (3) ◽  
pp. 368-374 ◽  
Author(s):  
A.-X. Liu ◽  
T.-L. Yang

Generally, approximate kinematic synthesis of planar linkage is studied using optimization method. But this method has two defects: i) the suitable initial guesses are hard to determine and ii) the global optimum solution is difficult to find. In this paper, a new method which can find all solutions to approximate kinematic synthesis of planar linkage is proposed. Firstly, we reduce the approximate synthesis problem to finding all solutions to polynomial equations. Polynomial continuation method is then used to find all solutions. Finally, all possible linkages can be obtained. Approximate syntheses of planar four-bar linkage for function generation, rigid-body guidance and path generation are studied in detail and three examples are given to illustrate the advantages of the proposed method.


1999 ◽  
Vol 123 (3) ◽  
pp. 388-394 ◽  
Author(s):  
Jennifer E. Holte ◽  
Thomas R. Chase ◽  
Arthur G. Erdman

A new approach to the synthesis of planar linkage mechanisms with approximate velocity constraints is proposed. The paper presents the first closed-form complex-number dyad solution to the ground pivot specification problem for two precision positions with velocity specified at one of the positions. The solution is then manipulated in order to add approximate velocity constraints to design methods for two exact positions and an unlimited number of approximate positions. The approximate position and velocity constraints facilitate more realistic representation of design objectives. Solution spaces are presented using two-dimensional ground-pivot maps. Computer implementation of the proposed methodologies would allow designers with little or no knowledge of the synthesis techniques to interactively explore maps of solutions for four-bar motion generation.


Author(s):  
Offer Shai ◽  
Gordon R. Pennock

This paper shows that there is a correlation between basic concepts underlying the kinematics of mechanisms and the statics of trusses. The implication of this correlation, referred to here as duality, is that the science of kinematics can be utilized in a systematic manner to yield insight into the statics of mechanical systems. The paper begins by proving the existence of a unique line (referred to as the equimomental line) where the moments, at each point on this line, caused by two arbitrary co-planar forces are equal. The dual concept in kinematics is the instantaneous center of zero velocity and two theorems are presented based on the duality between equimomental lines and instantaneous centers. The first theorem states that the three equimomental lines defined by three co-planar forces must intersect at a unique point. The second theorem states that the equimomental line for two co-planar forces acting in a trusss with two degrees of indeterminacy must pass through a unique point. The paper presents several practical examples to demonstrate how the duality between kinematics and statics provides a better understanding of planar linkages and trusses. The new concepts are used to identify the singular configurations of linkages and the configurations of determinate trusses where they are not rigid. Finally, the paper takes advantage of some important relationships between linkages and trusses to provide a general perspective of the duality between the kinematics of mechanisms and the statics of trusses.


Author(s):  
John A. Mirth

Abstract A mechanism that cannot pass through all precision positions in the correct sequence is said to violate the order condition. This paper establishes the order requirements for the precision position synthesis of all Grashof and non-Grashof four-bar linkages. These order requirements are based on three geometric characteristics of the four-bar mechanism: the angle of one of the rotating links that is attached to the ground link; the limits that the entire mechanism imposes on this rotating link; and the dyad configurations for the dyad that is opposite the ground pivot of this link. The results improve upon traditional discussions of the order problem by including all four-bar linkages, rather than just those of a specified Grashof type. A table summarizes the results in a form that allows for their implementation into computer programs for linkage design and analysis.


1998 ◽  
Vol 122 (3) ◽  
pp. 278-286 ◽  
Author(s):  
Jennifer E. Holte ◽  
Thomas R. Chase ◽  
Arthur G. Erdman

A new approach to the synthesis of planar linkage mechanisms with fuzzy constraints is proposed. Design methods for two exact positions and an unlimited number of approximate positions are presented. The use of approximate specifications allows the designer to represent design objectives more realistically. A precision position synthesis approach is used to generate a three-dimensional solution space of dyads satisfying all exact and approximate constraints. The three-dimensional solution space is reduced to a two-dimensional ground-pivot map. Computer implementation of the proposed methodologies would allow designers with little or no knowledge of the synthesis techniques to interactively explore maps of solutions for four-bar motion generation. [S1050-0472(00)00803-5]


Author(s):  
Zhenjun Luo ◽  
Jian S. Dai

This paper presents a new method, termed as patterned bootstrap (PB), which is suitable for precision position synthesis of planar linkages. The method solves a determined system of equations using a new bootstrapping strategy. In principle, a randomly generated starting point is advanced to a final solution through solving a number of intermediate systems. The structure and the associated parameters of each intermediate system is defined as a pattern. In practice, a PB procedure generally consists of two levels: an upper level which controls the transition of patterns, and a lower level which solves intermediate systems using globally convergent root-finding algorithms. Besides introducing the new method, tunnelling functions have been added to several systems of polynomials derived by formal researchers in order to exclude degenerated solutions. Our numerical experiments demonstrate that many precision position synthesis problems can be solved efficiently without resorting to time-consuming polynomial homotopy continuation methods or interval methods. Finding over 95 percentages of the complete solutions of the 11 precision position function generation problem of a Stephenson-III linkage has been achieved for the first time.


1977 ◽  
Vol 99 (2) ◽  
pp. 434-439 ◽  
Author(s):  
G. H. Sutherland

Design equations are developed for rigid body guidance through K equals one, two, three, and four exact positions and N – K approximate positions. Both circle and straight-line points are considered. Algebraic solution techniques for use with a pocket scientific calculator and a digital computer are illustrated using numerical examples.


Sign in / Sign up

Export Citation Format

Share Document