Real-Time Health Monitoring and Diagnostics for Gas Turbine Engines

Author(s):  
Michael J. Roemer ◽  
Ben Atkinson

Integrated life, vibration and performance monitoring/diagnostics capable of detecting and classifying developing engine faults is critical to reducing engine operating and maintenance costs while optimizing the life of “hot section” engine components (Troudet and Merrill, 1990). Advanced fault pattern recognition and classification techniques utilizing complex finite-element and empirical models of structural and performance related engine areas can now be accessed in a real-time monitoring environment (Dietz et al., 1989). Integration and implementation of these proven technologies presents a great opportunity to significantly enhance current engine health diagnostic capabilities and safely extend engine component life (Ali and Crawford, 1988).

Author(s):  
Jie Gao ◽  
Chunde Tao ◽  
Dongchen Huo ◽  
Guojie Wang

Marine, industrial, turboprop and turboshaft gas turbine engines use nonaxisymmetric exhaust volutes for flow diffusion and pressure recovery. These processes result in a three-dimensional complex turbulent flow in the exhaust volute. The flows in the axial turbine and nonaxisymmetric exhaust volute are closely coupled and inherently unsteady, and they have a great influence on the turbine and exhaust aerodynamic characteristics. Therefore, it is very necessary to carry out research on coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics, so as to provide reference for the high-efficiency turbine-volute designs. This paper summarizes and analyzes the recent advances in the field of coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics for turbomachinery. This review covers the following topics that are important for turbine and volute coupled designs: (1) flow and loss characteristics of nonaxisymmetric exhaust volutes, (2) flow interactions between axial turbine and nonaxisymmetric exhaust volute, (3) improvement of turbine and volute performance within spatial limitations and (4) research methods of coupled turbine and exhaust volute aerodynamics. The emphasis is placed on the turbine-volute interactions and performance improvement. We also present our own insights regarding the current research trends and the prospects for future developments.


Author(s):  
Edward M. House

Four Textron Lycoming TF40B marine gas turbine engines are used to power the U.S. Navy’s Landing Craft Air Cushion (LCAC) vehicle. This is the first hovercraft of this configuration to be put in service for the Navy as a landing craft. The TF40B has experienced compressor blade pitting, carbon erosion of the first turbine blade and hot corrosion of the hot section. Many of these problems were reduced by changing the maintenance and operation of the LCAC. A Component Improvement Program (CIP) is currently investigating compressor and hot section coatings better suited for operation in a harsh marine environment. This program will also improve the performance of some engine components such as the bleed manifold and bearing seals.


Author(s):  
Д.О. Пушкарёв

Рассматривается применение нейросетевых экспертных систем в области контроля, диагностики и прогнозирования технического состояния авиационных ГТД на основе нечеткой логики. Показана методика для решения таких задач в области технической эксплуатации авиационной техники совместно с использованием фаззи-интерференсной системы программы MATLAB. Используя статистические данные о работе двигателя формируется экспертная система на основе нейронной сети позволяющая осуществлять контроль и диагностику ГТД, а также прогнозировать дальнейшее техническое состояния анализируемого двигателя. The application of neural network expert systems in the field of monitoring, diagnostics and forecasting of the technical condition of aviation gas turbine engines based on fuzzy logic is considered. The technique for solving such problems in the field of technical operation of aircraft and using the fuzzy-interference system of the MATLAB program is shown. Using statistical data on the operation of the engine, an expert system is based on the fundamental of a neural network that provide monitoring and diagnostics of gas turbine engines, as well as predicting the further technical condition of the analyzed engine.


Author(s):  
John T. Lindsay ◽  
C. W. Kauffman

Real Time Neutron Radiography (RTNR) is rapidly becoming a valuable tool for nondestructive testing and basic research with a wide variety of applications in the field of engine technology. The Phoenix Memorial Laboratory (PML) at the University of Michigan has developed a RTNR facility and has been using this facility to study several phenomena that have direct application to internal combustion and gas turbine engines. These phenomena include; 1) the study of coking and debris deposition in several gas turbine nozzles (including the JT8D), 2) the study of lubrication problems in operating standard internal combustion engines and in operating automatic transmissions (1, 2, 3), 3) the location of lubrication blockage and subsequent imaging of the improvement obtained from design changes, 4) the imaging of sprays inside metallic structures in both a two-dimensional, standard radiographic manner (4, 5) and in a computer reconstructed, three-dimensional, tomographic manner (2, 3), and 5) the imaging of the fuel spray from an injector in a single cylinder diesel engine while the engine is operating. This paper will show via slides and real time video, the above applications of RTNR as well as other applications not directly related to gas turbine engines.


Author(s):  
Tania Bhatia ◽  
Venkat Vedula ◽  
Harry Eaton ◽  
Ellen Sun ◽  
John Holowczak ◽  
...  

Environmental barrier coatings (EBCs) are being developed for silicon carbide (SiC) based composites and monolithic silicon nitride (Si3N4) to protect against the accelerated oxidation and subsequent silica volatilization in high temperature, high-pressure steam environments encountered in gas turbine engines. While EBCs for silicon carbide (EBCSiC) have been demonstrated in combustor liner applications, efforts are ongoing in the development of EBC systems for silicon nitride (EBCSiN). The challenges of adapting EBCSiC to monolithic Si3N4 are discussed in this paper. Progress in the area of EBCSiN including development and performance during field tests and tests simulating engine conditions are reviewed.


Author(s):  
Nanahisa Sugiyama

This paper describes a real-time or faster-than-real-time simulation of gas turbine engines, using an ultra high speed, multi-processor digital computer, designated the AD100. It is shown that the frame time is reduced significantly without any loss of fidelity of a simulation. The simulation program is aimed at a high degree of flexibility to allow changes in engine configuration. This makes it possible to simulate various types of gas turbine engines, including jet engines, gas turbines for vehicles and power plants, in real-time. Some simulation results for an intercooled-reheat type industrial gas turbine are shown.


1993 ◽  
Vol 115 (1) ◽  
pp. 1-8 ◽  
Author(s):  
B. J. McEntire ◽  
R. R. Hengst ◽  
W. T. Collins ◽  
A. P. Taglialavore ◽  
R. L. Yeckley

Norton/TRW Ceramics (NTC) is developing ceramic components as part of the DOE-sponsored Advanced Turbine Technology Applications Project (ATTAP). NTC’s work is directed at developing manufacturing technologies for rotors, stators, vane-seat platforms, and scrolls. The first three components are being produced from a HIPed Si3N4, designated NT154. Scrolls were prepared from a series of siliconized silicon-carbide (Si-SiC) materials designated NT235 and NT230. Efforts during the first three years of this five-year program are reported. Developmental work has been conducted on all aspects of the fabrication process using Taguchi experimental design techniques. Appropriate materials and processing conditions were selected for power beneficiation, densification, and heat-treatment operations. Component forming has been conducted using thermal-plastic-based injection molding (IM), pressure slip-casting (PSC), and Quick-Set™ injection molding.1 An assessment of material properties for various components from each material and process were made. For NT154, characteristic room-temperature strengths and Weibull Moduli were found to range between ≈920 MPa to ≈1 GPa and ≈10 to ≈19, respectively. Process-induced inclusions proved to be the dominant strength-limiting defect regardless of the chosen forming method. Correction of the lower observed values is being addressed through equipment changes and upgrades. For the NT230 and NT235 Si-SiC, characteristic room-temperature strengths and Weibull Moduli ranged from ≈240 to ≈420 MPa, and 8 to 10, respectively. At 1370°C, strength values for both the HIPed Si3N4 and the Si-SiC materials ranged from ≈480 MPa to ≈690 MPa. The durability of these materials as engine components is currently being evaluated.


1978 ◽  
Author(s):  
D. K. Andrews ◽  
M. W. Smart

Requirements are defined for fuel flow control elements to be used with an electronic computer to form a flexible complete control system for a diverse range of small industrial and automotive gas turbine engines. A preferred system configuration is described, suitable for use with a variety of engine types and output powers in the 100 to 1000 kw range and for medium and high quantity production. The solution described uses a gear type fuel pump, a simple metering valve positioned by a moving coil d-c force motor, a diaphragm type pressure drop regulator, and a solenoid high pressure shut-off valve. The reasons for choice of this arrangement and its specific advantages are presented. Development and early service experience with the system are discussed and performance characteristics are presented.


Author(s):  
Youry A. Nozhnitsky ◽  
Youlia A. Fedina ◽  
Anatoly D. Rekin ◽  
Nickolai I. Petrov

For years of time there have been conducted the investigations of gas-turbine engine parts made of carbon-carbon and ceramic materials. This paper presents mainly the results of works done to create engine components of ceramic materials. There are given the investigation results on development of equipment and methods intended for use in determining the characteristics of heat-resistant non-metallic materials under ultra high temperature conditions. The unique tooling is developed to be used for conducting mechanical tests in different conditions (vacuum, protective medium, air) at temperatures up to 2200°C. There are considered three possible fields of application of ceramic materials, that are, turbine (1), combustion chamber and other stator components operating at high temperatures (2), bearings (3). Different ceramic elements are designed and manufactured, their structural strength is investigated in the laboratory faculties and also as part of engine gas generators.


Sign in / Sign up

Export Citation Format

Share Document