scholarly journals Design of Tubular Humidifiers for Evaporative Gas Turbine Cycles

Author(s):  
Farnosh Dalili ◽  
Mats Westermark

In the evaporative gas turbine (EvGT) cycle, also referred to as the humid air turbine (HAT) cycle, the compressed air is humidified with water to increase the mass flow through the expander, resulting in high power output and high exhaust heat recovery potential. This paper presents a design methodology for tubular humidifiers, in which pressurized air is led inside of smooth metallic tubes and is brought into contact with a falling water film. The heat required for humidification is mainly taken from exhaust gas from the gas turbine on the shell side and also by recirculating water through the intercooler and the aftercooler. The most important parameters for designing tubular humidifiers are: heat transfer coefficient on the flue gas side; and mass transfer coefficient for water vapor on the air side. Important design aspects include: proper wetting of the tubes; how to avoid flooding of the tubes; entrainment of water droplets into the air stream; and boiling in the water film. All calculations in this paper are based on an evaporative gas turbine cycle applied for combined heat and power generation with a partial-flow humidification circuit, where a fraction of the compressed air is humidified while a major part is by-passed directly to the recuperator. It is concluded that the required heat exchanging surface can be reduced if humidification is carried out for only a fraction of the air (20–30 percent). Finned tubes are recommended to enhance the heat transfer per unit tube length.

Author(s):  
Gm S. Azad ◽  
Je-Chin Han ◽  
Robert J. Boyle

Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modern first stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1×106. A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. The heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1% case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.


Author(s):  
Minghui Hu ◽  
Dongsheng Zhu ◽  
Jialong Shen

It is requested to develop a microscale and high performance heat exchanger for small size energy equipments. The heat transfer performance of the water film on the condensing coils of the microscale evaporative condenser was studied for a single-stage compressed refrigeration cycle system. Under various operation conditions, the effects of the spray density and the head-on air velocity on the heat transfer performance of the water film were investigated. The results show that the microscale heat transfer coefficient of the water film αw increases with the increase of spray density and decreases with the increase of head-on air velocity. The results indicate that the key factor affecting the microscale heat transfer of the water film is the spray density. As the results, it is measured that the present device attained high heat transfer quantity despite the weight is light. In addition, via regression analysis of the experimental data, the correlation equation for calculating the microscale heat transfer coefficient of the water film was obtained, its regression correlation coefficient R is 0.98 and the standard deviation is 7.5%. Finally, the correlations from other works were compared. The results presented that the experimental correlation had better consistency with the correlations from other works. In general, the obtained experimental results of the water film heat transfer are helpful to the design and practical operation of the microscale evaporative condensers.


2000 ◽  
Vol 122 (4) ◽  
pp. 717-724 ◽  
Author(s):  
Gm. S. Azad ◽  
Je-Chin Han ◽  
Shuye Teng ◽  
Robert J. Boyle

Heat transfer coefficient and static pressure distributions are experimentally investigated on a gas turbine blade tip in a five-bladed stationary linear cascade. The blade is a two-dimensional model of a first-stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. The middle 3-blade has a variable tip gap clearance. All measurements are made at three different tip gap clearances of about 1, 1.5, and 2.5 percent of the blade span. Heat transfer measurements are also made at two different turbulence intensity levels of 6.1 and 9.7 percent at the cascade inlet. Static pressure measurements are made in the midspan and the near-tip regions as well as on the shroud surface, opposite the blade tip surface. Detailed heat transfer coefficient distributions on the plane tip surface are measured using a transient liquid crystal technique. Results show various regions of high and low heat transfer coefficient on the tip surface. Tip clearance has a significant influence on local tip heat transfer coefficient distribution. Heat transfer coefficient also increases about 15–20 percent along the leakage flow path at higher turbulence intensity level of 9.7 over 6.1 percent. [S0889-504X(00)00404-9]


Author(s):  
Godwin Ita Ekong ◽  
Christopher A. Long ◽  
Peter R. N. Childs

Compressor tip clearance for a gas turbine engine application is the radial gap between the stationary compressor casing and the rotating blades. The gap varies significantly during different operating conditions of the engine due to centrifugal forces on the rotor and differential thermal expansions in the discs and casing. The tip clearance in the axial flow compressor of modern commercial civil aero-engines is of significance in terms of both mechanical integrity and performance. In general, the clearance is of critical importance to civil airline operators and their customers alike because as the clearance between the compressor blade tips and the casing increases, the aerodynamic efficiency will decrease and therefore the specific fuel consumption and operating costs will increase. This paper reports on the development of a range of concepts and their evaluation for the reduction and control of tip clearance in H.P. compressors using an enhanced heat transfer coefficient approach. This would lead to improvement in cruise tip clearances. A test facility has been developed for the study at the University of Sussex, incorporating a rotor and an inner shaft scaled down from a Rolls-Royce Trent aero-engine to a ratio of 0.7:1 with a rotational speed of up to 10000 rpm. The idle and maximum take-off conditions in the square cycle correspond to in-cavity rotational Reynolds numbers of 3.1×106 ≤ Reφ ≤ 1.0×107. The project involved modelling of the experimental facilities, to demonstrate proof of concept. The analysis shows that increasing the thermal response of the high pressure compressor (HPC) drum of a gas turbine engine assembly will reduce the drum time constant, thereby reducing the re-slam characteristics of the drum causing a reduction in the cold build clearance (CBC), and hence the reduction in cruise clearance. A further reduction can be achieved by introducing radial inflow into the drum cavity to further increase the disc heat transfer coefficient in the cavity; hence a further reduction in disc drum time constant.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongfei Tang ◽  
Hongyan Huang ◽  
Wanjin Han

The different turbulence models are adopted to simulate NASA-MarkII high pressure air-cooled gas turbine. The experimental work condition is Run 5411. The paper researches that the effect of different turbulence models for the flow and heat transfer characteristics of turbine. The turbulence models include: the laminar turbulence model, high Reynolds number k-ε turbulence model, low Reynolds number turbulence model (k-ω standard format, k-ω-SST and k-ω-SST-γ-θ) and B-L algebra turbulence model which is adopted by the compiled code. The results show that the different turbulence models can give good flow characteristics results of turbine, but the heat transfer characteristics results are different. Comparing to the experimental results, k-ω-SST-θ-γ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature is higher. The results of B-L algebra turbulence model show that the results of B-L model are accurate besides it has 4% temperature error in the transition region. As to the other turbulence models, the results show that all turbulence models can simulate the temperature distribution on the blade pressure surface except the laminar turbulence model underestimates the heat transfer coefficient of turbulence flow region. On the blade suction surface with transition flow characteristics, high Reynolds number k-ε turbulence model overestimates the heat transfer coefficient and causes the blade surface temperature is high about 90K than the experimental result. Low Reynolds number k-ω standard format and k-ω-SST turbulence models also overestimate the blade surface temperature value. So it can draw a conclusion that the unreasonable choice of turbulence models can cause biggish errors for conjugate heat transfer problem of turbine. The combination of k-ω-SST-γ-θ model and B-L algebra model can get more accurate turbine thermal environment results. In addition, in order to obtain the affect of different turbulence models for gas turbine conjugate heat transfer problem. The different turbulence models are adopted to simulate the different computation mesh domains (First case and Second case). As to each cooling passages, the first case gives the wall heat transfer coefficient of each cooling passages and the second case considers the conjugate heat transfer course between the cooling passages and blade. It can draw a conclusion that the application of heat transfer coefficient on the wall of each cooling passages avoids the accumulative error. So, for the turbine vane geometry models with complex cooling passages or holes, the choice of turbulence models and the analysis of different mesh domains are important. At last, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine.


1992 ◽  
Vol 114 (3) ◽  
pp. 688-694 ◽  
Author(s):  
N. M. Al-Najem ◽  
K. Y. Ezuddin ◽  
M. A. Darwish

A theoretical study has been conducted for evaporative heating of turbulent free-falling liquid films inside long vertical tubes. The methodology of the present work is based on splitting the energy equation into homogeneous and nonhomogeneous problems. Solving these simple problems yields a rapidly converging solution, which is convenient for computational purposes. The eigenvalues associated with the homogeneous problem can be computed efficiently, without missing any one of them, by the sign-count algorithm. A new correlation for the local evaporative heat transfer coefficient along the tube length is developed over wide ranges of Reynolds and Prandtl numbers. Furthermore, the average heat transfer coefficient is correlated as a function of Reynolds and Prandtl numbers as well as the interfacial shear stress. A correlation for the heat transfer coefficient in the fully developed region is also presented in terms of Reynolds and Prandtl numbers. Typical numerical results showed excellent agreement of the present approach with the available data in the literature. Moreover, a parametric study is made to illustrate the general effects of various variables on the velocity and temperature profiles.


Author(s):  
Xinping Ouyang ◽  
Hua Zhang ◽  
Ni Liu ◽  
Guomei Wu

Curve fitting method is often used in the test of heat transfer performance of heat exchangers. The convective heat transfer coefficient may be obtained with the method. However, there are defects with the method. A New Curve fitting method is introduced in this paper. Optimum seeking method is adopted in the New Curve fitting method. The new method is a practical method for test of convective heat transfer coefficient. There are few constraint with the method. Moreover, the results are more precise and the test is more convenient. The method is especially suitable for test of convective heat transfer coefficient of finned tubes outer surface. Two instances of use of the method are given.


1992 ◽  
Vol 62 (7) ◽  
pp. 387-392 ◽  
Author(s):  
George E. R. Lamb

An expression derived by Take-uchi for the heat transfer coefficient of a fabric exposed to an air stream has been shown to apply (with suitable modification) to the transfer of water vapor through the fabric under the same conditions of ventilation. Experimental and calculated values of the moisture transfer coefficient agree fairly well.


2015 ◽  
Vol 23 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Ryoji Katsuki ◽  
Tsutomu Shioyama ◽  
Chikako Iwaki ◽  
Tadamichi Yanazawa

We have been developing a free convection air cooled heat exchanger without power supply to improve economic efficiency and mechanical reliability. However, this heat exchanger requires a larger installation area than the forced draft type air cooled heat exchanger since a large heating surface is needed to compensate for the small heat transfer by natural convection. Therefore, we have been investigating a heat exchanger consisting of an array of finned tubes and chimney to increase the heat transfer coefficient. Since the heat transfer characteristics of finned tube arrays have not been clarified, we conducted experiments with a finned tube array to determine the relation between the configuration of finned tubes and the heat transfer coefficient of a tube array. The results showed that the average heat transfer coefficient increased with pitch in the vertical direction, and became constant when the pitch was over five times the fin diameter. The average heat transfer coefficient was about 1.4 times higher than that of a single finned tube in free space. The ratio of the average heat transfer coefficient of the finned tube array with chimney to that of a single finned tube was found to be independent of the difference in temperature between the tube surface and air.


Sign in / Sign up

Export Citation Format

Share Document