CFD Analysis of a Centrifugal Compressor Impeller and Volute

Author(s):  
Harri Pitkänen ◽  
Hannu Esa ◽  
Petri Sallinen ◽  
Jaakko Larjola

In this study, centrifugal compressor performance was predicted using CFD. Three-dimensional time-averaged impeller and volute simulations were performed using a Navier–Stokes code. The presented performance prediction method has been divided into three phases. Firstly, the impeller was calculated with a vaneless diffuser. That gives inlet boundary conditions for the volute analysis and the pressure ratio at the diffuser exit. Next, the volute analysis was performed and a static pressure recovery coefficient obtained. Finally, that result was combined with the pressure ratio prediction from the impeller analysis, and the overall compressor performance thus obtained.

Author(s):  
T. Ch. Siva Reddy ◽  
G. V. Ramana Murty ◽  
Prasad Mukkavilli ◽  
D. N. Reddy

Numerical simulation of impeller and low solidity vaned diffuser (LSD) of a centrifugal compressor stage is performed individually using CFX- BladeGen and BladeGenPlus codes. The tip mach number for the chosen study was 0.35. The same configuration was used for experimental investigation for a comparative study. The LSD vane is formed using standard NACA profile with marginal modification at trailing edge. The performance parameters obtained form numerical studies at the exit of impeller and the diffuser have been compared with the corresponding experimental data. These parameters are pressure ratio, polytropic efficiency and flow angle at the impeller exit where as the parameters those have been compared at the exit of diffuser are the static pressure recovery coefficient and the exit flow angle. In addition, the numerical prediction of the blade loading in terms of blade surface pressure distribution on LSD vane has been compared with the corresponding experimental results. Static pressure recovery coefficient and flow angle at diffuser exit is seen to match closely at higher flows. The difference at lower flows could be due to the effect of interaction between impeller and diffuser combinations, as the numerical analysis was done separately for impeller and diffuser and the effect of impeller diffuser interaction was not considered.


Author(s):  
Jiandao Yang ◽  
Taowen Chen ◽  
Jun Li ◽  
Zhenping Feng

Combined with three-dimensional parameterization method of exhaust diffuser profile, aerodynamic performance evaluation method, response surface approximation evaluation model and Hooke-Jeeves direct search approach, aerodynamic optimization design of exhaust hood diffuser for steam turbine is presented. The aerodynamic performance of exhaust hood design candidate is evaluated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solutions. Aerodynamic optimization design of exhaust hood is conducted for the maximum of the static pressure recovery coefficient of exhaust hood. The design variables are specified by the exhaust diffuser profile parameterization method. The aerodynamic performance of the optimized exhaust hood and referenced design is numerically calibrated with consideration of the full last stage and rotor tip clearance. The static pressure recovery coefficient of the optimized exhaust hood is higher than that of the referenced design with consideration of the upstream last stage influence. Furthermore, the detailed flow pattern of the optimized exhaust hood and referenced design is also analyzed and compared.


Author(s):  
E Swain

A one-dimensional centrifugal compressor performance prediction technique that has been available for some time is updated as a result of extracting the component performance from three-dimensional computational fluid dynamic (CFD) analyses. Confidence in the CFD results is provided by comparison of overall performance for one of the compressor examples. The extracted impeller characteristic is compared with the original impeller loss model, and this indicated that some improvement was desirable. The position of least impeller loss was determined using a traditional axial compressor cascade method, and suitable algebraic expressions were derived to match the CFD data. The merit of the approach lies with the relative ease that CFD component performance currently can be achieved and adjusting one-dimensional methods to agree with the CFD-derived models.


1998 ◽  
Vol 120 (2) ◽  
pp. 205-214 ◽  
Author(s):  
C. M. Rhie ◽  
A. J. Gleixner ◽  
D. A. Spear ◽  
C. J. Fischberg ◽  
R. M. Zacharias

A multistage compressor performance analysis method based on the three-dimensional Reynolds-averaged Navier-Stokes equations is presented in this paper. This method is an average passage approach where deterministic stresses are used to ensure continuous physical properties across interface planes. The average unsteady effects due to neighboring blades and/or vanes are approximated using deterministic stresses along with the application of bodyforces. Bodyforces are used to account for the “potential” interaction between closely coupled (staged) rows. Deterministic stresses account for the “average” wake blockage and mixing effects both axially and radially. The attempt here is to implement an approximate technique for incorporating periodic unsteady flow physics that provides for a robust multistage design procedure incorporating reasonable computational efficiency. The present paper gives the theoretical development of the stress/bodyforce models incorporated in the code, and demonstrates the usefulness of these models in practical compressor applications. Compressor performance prediction capability is then established through a rigorous code/model validation effort using the power of networked workstations. The numerical results are compared with experimental data in terms of one-dimensional performance parameters such as total pressure ratio and circumferentially averaged radial profiles deemed critical to compressor design. This methodology allows the designer to design from hub to tip with a high level of confidence in the procedure.


1990 ◽  
Author(s):  
H. David Joslyn ◽  
Joost J. Brasz ◽  
Robert P. Dring

The ability to acquire blade loadings (surface pressure distributions) and surface flow visualization on an unshrouded centrifugal compressor impeller is demonstrated. Circumferential and streamwise static pressure distributions acquired on the stationary shroud are also presented. Data was acquired in a new facility designed for centrifugal compressor aerodynamic research. Blade loadings calculated with a blade–to–blade potential flow analysis are compared with the measured results. Surface flow visualization reveals some complex aspects of the flow on the surface of the impeller blading and hub. In a companion paper, Dorney and Davis (1990), a state–of–the–art, three–dimensional, time–accurate, Navier Stokes prediction of the flow through the impeller is presented.


Author(s):  
Alain Demeulenaere ◽  
Olivier Léonard ◽  
René Van den Braembussche

The use of a three-dimensional Euler inverse method for the design of a centrifugal impeller is demonstrated. Both the blade shape and the endwalls are iteratively designed. The meridional contour is modified in order to control the mean velocity level in the blade channel, while the blade shape is designed to achieve a prescribed loading distribution between the inlet and the outlet. The method salves the time dependent Euler equations in a numerical domain of which some boundaries (the blades or the endwalls) move and change shape during the transient part of the computation, until a prescribed pressure distribution is achieved on the blade surfaces. The method is applied to the design of a centrifugal compressor impeller, whose hub endwall and blade surfaces are modified by the inviscid inverse method. The real performance of both initial and modified geometries are compared through three-dimensional Navier-Stokes computations.


Author(s):  
Hong Won Kim ◽  
Jae Hoon Chung ◽  
Hyo Seong Lee ◽  
Min Ouk Choi

The primary design goal of a compressor is focused on improving efficiency. Secondary objective is to widen the compressor’s operating range. This paper presents a numerical and experimental investigation of the influence of the bleed slot to enlarge operating range for the 1.2MW class centrifugal compressor installed in a turbocharger. The main design parameters of the bleed slot casing are upstream slot position, inlet pipe slope, downstream slot position and width. The DOE (design of experiment) method was carried out to optimize the casing design. Numerical analyses were done by the commercial code ANSYS-CFX based on the three dimensional Reynolds-averaged Navier-Stokes equations. From the analysis, as the downstream slot position and width are smaller and upstream position is located away from impeller inlet, efficiency and pressure ratio are increased. Experimental works were done with and without the bleed slot casing. The simulation results were in good agreement with the test data. In case without the bleed slot casing, the surge margin value came out to be only 11.8% but with the optimized bleed slot design, the surge margin reached 23%. Therefore, the surge margin increase of 11.2% was achieved.


Author(s):  
Chae M. Rhie ◽  
Aaron J. Gleixner ◽  
David A. Spear ◽  
Craig J. Fischberg ◽  
Robert M. Zacharias

A novel multistage compressor performance analysis method based on the three-dimensional Reynolds averaged Navier-Stokes equations is presented in this paper. This approach is a “continuous interface plane approach” where deterministic stresses are used to ensure continuous physical properties across interface planes. The average unsteady effects due to neighboring blades and/or vanes are approximated using deterministic stresses along with the application of bodyforces. Bodyforces are used to account for the “potential” interaction between closely coupled (staged) rows. Deterministic stresses account for the “average” wake blockage and mixing effects both axially and radially. The attempt here is to implement an approximate technique for incorporating periodic unsteady flow physics that provides for a robust multistage design procedure incorporating reasonable computational efficiency. The present paper gives the theoretical development of the stress/bodyforce models incorporated in the code, and demonstrates the usefulness of these models in practical compressor applications. Compressor performance prediction capability is then established through a rigorous code/model validation effort using the power of networked workstations. The numerical results are compared with experimental data in terms of one-dimensional performance parameters such as total pressure ratio and circumferentially averaged radial profiles deemed critical to compressor design. This methodology allows the designer to design from hub to tip with a high level of confidence in the procedure.


Author(s):  
Chaitanya V. Halbe ◽  
Walter F. O’Brien ◽  
William T. Cousins ◽  
Vishnu Sishtla

The performance of a compressor is known to be affected by the ingestion of liquid droplets. Heat, mass and momentum transfer as well as the droplet dynamics are some of the important mechanisms that govern the two-phase flow. This paper presents numerical investigations of three-dimensional two-phase flow in a two-stage centrifugal compressor, incorporating the effects of the above mentioned mechanisms. The results of the two-phase flow simulations are compared with the simulation involving only the gaseous phase. The implications for the compressor performance, viz. the pressure ratio, the power input and the efficiency are discussed. The role played by the droplet-wall interactions on the rate of vaporization, and on the compressor performance is also highlighted.


Author(s):  
Mahdi Nili-Ahmadabadi ◽  
Ali Hajilouy-Benisi ◽  
Mohammad Durali ◽  
Sayyed Mostafa Motavalli

In this research, the centrifugal compressor of a turbocharger is investigated experimentally and numerically. Performance characteristics of the compressor were obtained experimentally by measurements of rotor speed and flow parameters at the inlet and outlet of the compressor. Three dimensional flow field in the impeller and diffuser was analyzed numerically using a full Navier-Stokes program with SST turbulence model. The performance characteristics of the compressor were obtained numerically, which were then compared with the experimental results. The comparison shows good agreement. Furthermore, the effect of area ratio and tip clearance on the performance parameters and flow field was studied numerically. The impeller area ratio was changed by cutting the impeller exit axial width from an initial value of 4.1 mm to a final value of 5.1 mm, resulting in an area ratio from 0.792 to 0.965. For the rotor with exit axial width of 4.6 mm, performance was investigated for tip clearance of 0.0, 0.5 and 1.0 mm. Results of this simulation at design point showed that the compressor pressure ratio peaked at an area ratio of 0.792 while the efficiency peaked at a higher value of area ratio of 0.878. Also the increment of the tip clearance from 0 to 1 mm resulted in 20 percent efficiency decrease.


Sign in / Sign up

Export Citation Format

Share Document