Observation and Scaling of Tip Vortex Cavitation on Elliptical Hydrofoils

Author(s):  
Shigeki Nagaya ◽  
Risa Kimoto ◽  
Kenji Naganuma ◽  
Takayuki Mori

Experimental study on tip vortex cavitation (TVC) was carried out for elliptical hydrofoils with various chord lengths. The purpose of the experiment was to clarify the influences of Reynolds number and water quality on tip vortex cavitation. Experiments were made in a large cavitation tunnel of the Naval Systems Research Center, TRDI/Ministry of Defense Japan. The elliptical hydrofoils tested were NACA 0012 cross section with chord lengths of 500mm, 250mm and 50mm. Reynolds number based on hydrofoil chord length was 2×105 < ReC < 7.4×106. Water quality of the tunnel was characterized by air content and nuclei distribution. Air content of the tunnel was varied between 30% and 80%. Nuclei distribution was measured by a cavitation susceptibility meter (CSM) with center-body venturi. Cavitation inception was determined from high speed video observation. A standard formula, (σL/σS) = (ReL/ReS)n, was applied for the scaling. In the present study, exponent of the scaling law n was found to be 0.2 < n < 0.4. High speed video observation showed that the process of the TVC inception strongly depends on water quality. In the experiments, unsteady behaviors of TVC were also investigated. Strong interactions between sheet cavitation and TVC were observed.

1997 ◽  
Vol 119 (2) ◽  
pp. 271-276 ◽  
Author(s):  
B. Maines ◽  
R. E. A. Arndt

A relatively high amplitude, discrete tone is radiated from fully developed tip vortex cavitation under certain conditions. The phenomenon of the “singing vortex” was first reported by Higuchi et al. (1989). This study more closely examines the singing phenomenon by varying the hydrofoil cross-section, scale, angle of attack, water quality, and cavitation number in two different facilities. Noise data were collected for each condition with visual documentation using both still photography and high speed video in an effort to explain the mechanism of vortex singing. The theory of Kelvin (1880) provides a framework for correlating all the data obtained.


Author(s):  
Ivaylo Nedyalkov ◽  
Ian Gagnon ◽  
Jesse Shull ◽  
John Brindley ◽  
Martin Wosnik

Wingtip devices are common in aeronautical applications and are increasingly used on wind turbines. However, their use in hydrokinetic energy conversion applications such as tidal turbines to date is minimal, due to the concern for increased bio-fouling and also the fact that there is little or no data publically available describing their cavitation characteristics. In this study, three wingtip designs were considered for hydrokinetic turbine applications: a plain foil with a rounded tip (considered the reference case), a generic wingtip device (a winglet), and a novel “split-tip” device. The tips were studied numerically and experimentally at different angles of attack. The numerical simulations were performed in OpenFOAM using the k-omega SST model to predict the lift and drag characteristics of a “base” foil with each of the three wingtip devices. Additionally the pressure and vorticity were observed. Experiments were conducted in the University of New Hampshire High-Speed Cavitation Tunnel – HiCaT. A modular experimental test bed with an elliptical foil section was developed specifically for the study. The test bed extends to the centerline of the tunnel where wingtips are attached, and has four small-diameter tube openings to accommodate pressure measurements and/or mass injection studies. Water tunnel data were obtained for lift, and cavitation inception, and compared to the numerical simulations. The numerical results show decreased vorticity with presence of the wingtip devices, however, the advantage of using wingtips for decreasing drag and increasing lift forces is not conclusively exhibited. The experimental measurements suggest that there is a significant suppression of tip vortex cavitation with the use of wingtip devices at high angles of attack (around 10 degrees), but the advantage of using the wingtip devices diminishes at lower angles of attack. It was shown by Arndt [1] that tip-vortex cavitation on hydrofoils can be related to the lift coefficient and the Reynolds number, where the cavitation index at inception is proportional to the square of the section lift coefficient and the Reynolds number based on hydrofoil chord, taken to the power m. The power exponent m has been generally accepted to be approximately 0.4. This relation is made into an equation via a coefficient of proportionality K, which depends on the wingtip and foil section geometry, and has been empirically determined to have values between 0.025 and 0.056 for previously investigated wings. While the value of the coefficient K for the reference wing tip remained comparatively constant for the range of conditions investigated (angles of attack, Reynolds numbers), it varied significantly for the foil terminated by the winglet. This may be due to the non-elliptical load distribution in the span-wise direction, but also raises the question whether the standard tip-vortex cavitation correlation for hydrofoils is applicable for general wingtip devices.


Author(s):  
Christopher J. Chesnakas ◽  
Stuart D. Jessup

An extensive experimental investigation was carried out to examine tip-vortex induced cavitation on a ducted propulsor. The flowfield about a 3-bladed, ducted rotor operating in uniform inflow was measured in detail with three-dimensional LDV; cavitation inception was measured; and a correlated hydrophone/high-speed video system was used to identify and characterize the early, sub-visual cavitation events. Two geometrically-similar, ducted rotors were tested over a Reynolds number range from 1.4×106 to 9×106 in order to determine how the tip-vortex cavitation scales with Reynolds number. Analysis of the data shows that exponent for scaling tip-vortex cavitation with Reynolds number is smaller than for open rotors. It is shown that the parameters which are commonly accepted to control tip-vortex cavitation, vortex circulation and vortex core size, do not directly control cavitation inception on this ducted rotor. Rather it appears that cavitation is initiated by the stretching and deformation of secondary vortical structures resulting from the merger of the leakage and tip vortices.


2018 ◽  
Vol 141 (6) ◽  
Author(s):  
Bangxiang Che ◽  
Linlin Cao ◽  
Ning Chu ◽  
Dmitriy Likhachev ◽  
Dazhuan Wu

Transitional cavity shedding is known as the stage of attached cavitation with high instability and distinct periodicity. In this study, we experimentally investigated the dynamic characteristics of transitional cavity (0.8≤L/c<1) shedding on NACA0015 hydrofoil with high-speed video observation and synchronous pressure measurement. In the partial cavity (0.4<L/c<0.8) oscillation, the sheet cavitation grew along the chord with good spanwise uniformity, and the middle-entrant jet played a dominant role in cavity shedding. Meanwhile, in the transitional cavity oscillation, the previous shedding cavity exhibited a prohibitive effect on the growth of sheet cavitation on the hydrofoil, resulting in concave cavity closure line. Moreover, two symmetrical side-entrant jets originated at the near-wall ends and induced the two-stage shedding phenomenon. The aft and fore parts of the sheet cavitation shed separated as different forms and eventually merged into the large-scale cloud cavity.


2004 ◽  
Vol 48 (01) ◽  
pp. 15-30
Author(s):  
Hanseong Lee ◽  
Spyros A. Kinnas

Most marine propellers operate in nonaxisymmetric inflows, and thus their blades are often subject to an unsteady flow field. In recent years, due to increasing demands for faster and larger displacement ships, the presence of blade sheet and tip vortex cavitation has become very common. Developed tip vortex cavitation, which often appears together with blade sheet cavitation, is known to be one of the main sources of propeller-induced pressure fluctuations on the ship hull. The prediction of developed tip vortex cavity as well as blade sheet cavity is thus quite important in the assessment of the propeller performance and the corresponding pressure fluctuations on the ship hull. A boundary element method is employed to model the fully unsteady blade sheet (partial or supercavitating) and developed tip vortex cavitation on propeller blades. The extent and size of the cavity is determined by satisfying both the dynamic and the kinematic boundary conditions on the cavity surface. The numerical behavior of the method is investigated for a two-dimensional tip vortex cavity, a three-dimensional hydrofoil, and a marine propeller subjected to nonaxisymmetric inflow. Comparisons of numerical predictions with experimental measurements are presented.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Young T. Shen ◽  
Scott Gowing ◽  
Stuart Jessup

Tip vortices generated by marine lifting surfaces such as propeller blades, ship rudders, hydrofoil wings, and antiroll fins can lead to cavitation. Prediction of the onset of this cavitation depends on model tests at Reynolds numbers much lower than those for the corresponding full-scale flows. The effect of Reynolds number variations on the scaling of tip vortex cavitation inception is investigated using a theoretical flow similarity approach. The ratio of the circulations in the full-scale and model-scale trailing vortices is obtained by assuming that the spanwise distributions of the section lift coefficients are the same between the model-scale and the full-scale. The vortex pressure distributions and core sizes are derived using the Rankine vortex model and McCormick’s assumption about the dependence of the vortex core size on the boundary layer thickness at the tip region. Using a logarithmic law to describe the velocity profile in the boundary layer over a large range of Reynolds number, the boundary layer thickness becomes dependent on the Reynolds number to a varying power. In deriving the scaling of the cavitation inception index as the ratio of Reynolds numbers to an exponent m, the values of m are not constant and are dependent on the values of the model- and full-scale Reynolds numbers themselves. This contrasts traditional scaling for which m is treated as a fixed value that is independent of Reynolds numbers. At very high Reynolds numbers, the present theory predicts the value of m to approach zero, consistent with the trend of these flows to become inviscid. Comparison of the present theory with available experimental data shows promising results, especially with recent results from high Reynolds number tests. Numerical examples of the values of m are given for different model- to full-scale sizes and Reynolds numbers.


2015 ◽  
Vol 778 ◽  
pp. 288-313 ◽  
Author(s):  
P. C. Pennings ◽  
J. Bosschers ◽  
J. Westerweel ◽  
T. J. C. van Terwisga

The dynamic behaviour of vortex cavitation on marine propellers may cause inboard noise and vibration, but is not well understood. The main goal of the present study is to experimentally analyse the dynamics of an isolated tip vortex cavity generated at the tip of a wing of elliptical planform. Detailed high-speed video shadowgraphy was used to determine the cavity deformations in combination with force and sound measurements. The cavity deformations can be divided in different modes, each of which show a distinct dispersion relation between frequency and wavenumber. The dispersion relations show good agreement with an analytical formulation. Finally, experimental support is given to the hypothesis that the resonance frequency of the cavity volume variation is related to a zero group velocity.


2008 ◽  
Vol 2008.46 (0) ◽  
pp. 403-404
Author(s):  
Keishi TANAKA ◽  
Masayuki HIGASHI ◽  
Akira OKADA ◽  
Yoshiyuki UNO ◽  
Toshiyuki YAMAUCHI

PROTOPLASMA ◽  
1998 ◽  
Vol 204 (1-2) ◽  
pp. 38-46 ◽  
Author(s):  
Iku Miyasaka ◽  
Kenji Nanba ◽  
Ken Furuya ◽  
Yoshihachiro Nimura

Sign in / Sign up

Export Citation Format

Share Document