Low-Emissions Renewable Power Generation Using Liquid Fuels

Author(s):  
Leo D. Eskin ◽  
Michael S. Klassen ◽  
Richard J. Roby ◽  
Richard G. Joklik ◽  
Maclain M. Holton

A Lean, Premixed, Prevaporized (LPP) combustion technology has been developed that converts liquid biofuels, such as biodiesel or ethanol, into a substitute for natural gas. This fuel can then be burned with low emissions in virtually any combustion device in place of natural gas, providing users substantial fuel flexibility. A gas turbine utilizing the LPP combustion technology to burn biofuels creates a “dispatchable” (on-demand) renewable power generator with low criteria pollutant emissions and no net carbon emissions. Natural gas, petroleum based fuel oil #1 and #2, biodiesel and ethanol were tested in an atmospheric pressure test rig using actual gas turbine combustor hardware (designed for natural gas) and achieved natural gas level emissions. Both biodiesel and ethanol achieved natural gas level emissions for NOx, CO, SOx and particulate matter (PM). Extended lean operation was observed for all liquid fuels tested due to the wider lean flammability range for these fuels compared to natural gas. Autoignition of the fuels was controlled by the level of diluent (inerting) gas used in the vaporization process. This technology has successfully demonstrated the clean generation of green, dispatchable, renewable power on a 30kW Capstone C30 microturbine. Emissions on the vaporized derived from bio-ethanol are 3 ppm NO(x) and 18 ppm CO, improving on the baseline natural gas emissions of 3 ppm NO(x), 30 ppm CO. Performance calculations have shown that for a typical combined cycle power plant, one can expect to achieve a two percent (2%) improvement in the overall net plant heat rate when burning liquid fuel as LPP Gas™ as compared to burning the same liquid fuel in traditional spray-flame diffusion combustors. This level of heat rate improvement is quite substantial, and represents an annual fuel savings of over five million dollars for base load operation of a GE Frame 7EA combined cycle plant (126 MW). This technology provides a clean and reliable form of renewable energy using liquid biofuels that can be a primary source for power generation or be a back-up source for non-dispatchable renewable energy sources such as wind and solar. The LPP technology allows for the clean use of biofuels in combustion devices without water injection or the use of post-combustion pollution control equipment and can easily be incorporated into both new and existing gas turbine power plants. No changes are required to the DLE gas turbine combustor hardware.

Author(s):  
R. Joklik ◽  
L. Eskin ◽  
M. Klassen ◽  
R. Roby ◽  
M. Holton ◽  
...  

A Lean, Premixed, Prevaporized (LPP) combustion technology has been developed that converts liquid fuels into a substitute for natural gas. This fuel can then be burned with low emissions in virtually any combustion device in place of natural gas. This technology offers the possibility of using unprocessed oil-field Natural Gas Condensate (NGC) for local or export power generation using a DLN-equipped gas turbine rather than flaring, as is common practice in some regions. The ability to run a turbine on natural gas condensate with NOx and CO emissions comparable to those of natural gas has been demonstrated using a surrogate fuel made up from a mixture of naphtha (representing C4 and greater) and methane (representing <C4). The naphtha was vaporized using an LPP system, mixed with methane, and used to generate power in a 30kW Capstone C30 microturbine. The LPP Gas™ was tailored to match the modified Wobbe Index (MWI) of methane. NOx emissions in pre-mix mode on the surrogate NGC fuel were sub 5 ppm, indistinguishable from those when running on methane. CO emissions were sub 20 ppm, comparable to those on methane. At lower loads (in diffusion mode), NOx and CO emissions on surrogate NGC-based LPP Gas™ remain comparable to those on methane. No changes were required to the DLN gas turbine combustor hardware.


Author(s):  
Richard J. Roby ◽  
Maclain M. Holton ◽  
Michael S. Klassen ◽  
Leo D. Eskin ◽  
Richard J. Joklik ◽  
...  

It is estimated that 30% of the over 1 billion cubic feet per day of natural gas produced in the Bakken shale field is lost to flaring. This flared gas, were it to be collected and used in DLE power generation gas turbine engines, represents approximately 1.2 GW of collective electric power. The main reason that much of this gas is flared is that the infrastructure in the Bakken lacks sufficient capacity or compression to combine and transport the gas streams. One of the reasons that this gas cannot be utilized on-site for power generation is that it contains significant amounts of natural gas liquids (NGLs) which make the gas unsuitable as a fuel for natural gas-fired gas turbine engines. A Lean, Premixed, Prevaporized (LPP) combustion technology has been developed that converts liquid fuels into a substitute for natural gas. This LPP Gastm can then be used to fuel virtually any combustion device in place of natural gas, yielding emissions comparable to those of ordinary natural gas. The LPP technology has been successfully demonstrated in over 1,000 hours of clean power generation on a 30 kW Capstone C30 microturbine. To date, 15 different liquid fuels have been vaporized and burned in the test gas turbine engine. To simulate the vaporization of NGLs, liquids including propane, pentane, and naphtha, among other liquids, have been vaporized and blended with methane. Emissions from the burning of these vaporized liquid fuels in the test engine have been comparable to baseline emissions from ordinary natural gas of 3 ppm NOx and 30 ppm CO. Autoignition of the vaporized liquid fuels in the gas turbine is controlled by the fraction of inert diluent added in the vaporization process. The LPP technology is able to process an infinitely variable composition of NGL components in the fuel stream by continually adjusting the amount of dilution to maintain a heating value consistent with natural gas. Burning the flare gases containing NGLs from a well locally, in a power generation gas turbine, would provide electricity for drilling operations. A microgrid can distribute power locally to the camps and infrastructure supporting the drilling and processing operations. Using the flare gases on-site has the benefit of reducing or eliminating the need for diesel tankers to supply fuel for power generation systems and equipment associated with the drilling operations.


Author(s):  
M. Sato ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
M. Yamada ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low–BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program on the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, is planned to develop the 1300 °C class gas turbines. However, in the case of using a hot type fuel gas cleaning system, the coal gas fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel–NOx combustion technology is one of the most important research subjects. This paper describes low fuel–NOx combustion technology for 1300 °C class gas turbine combustor using low BTU coal gas fuel. Authors have showed that the rich–lean combustion method is effective to decrease fuel–NOx (1). In general in rich–lean combustion method, the fuel–NOx decreases, as the primary zone becomes richer. But flameholding becomes very difficult in even rich primary zone. For this reason this combustor was designed to have a flameholder with pilot flame. Combustion tests were conducted by using a full scale combustor used in 150 MW gas turbine at the atmospheric pressure condition.


Author(s):  
Thormod Andersen ◽  
Hanne M. Kvamsdal ◽  
Olav Bolland

A concept for capturing and sequestering CO2 from a natural gas fired combined cycle power plant is presented. The present approach is to decarbonise the fuel prior to combustion by reforming natural gas, producing a hydrogen-rich fuel. The reforming process consists of an air-blown pressurised auto-thermal reformer that produces a gas containing H2, CO and a small fraction of CH4 as combustible components. The gas is then led through a water gas shift reactor, where the equilibrium of CO and H2O is shifted towards CO2 and H2. The CO2 is then captured from the resulting gas by chemical absorption. The gas turbine of this system is then fed with a fuel gas containing approximately 50% H2. In order to achieve acceptable level of fuel-to-electricity conversion efficiency, this kind of process is attractive because of the possibility of process integration between the combined cycle and the reforming process. A comparison is made between a “standard” combined cycle and the current process with CO2-removal. This study also comprise an investigation of using a lower pressure level in the reforming section than in the gas turbine combustor and the impact of reduced steam/carbon ratio in the main reformer. The impact on gas turbine operation because of massive air bleed and the use of a hydrogen rich fuel is discussed.


Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


Author(s):  
Vikram Muralidharan ◽  
Matthieu Vierling

Power generation in south Asia has witnessed a steep fall due to the shortage of natural gas supplies for power plants and poor water storage in reservoirs for low hydro power generation. Due to the current economic scenario, there is worldwide pressure to secure and make more gas and oil available to support global power needs. With constrained fuel sources and increasing environmental focus, the quest for higher efficiency would be imminent. Natural gas combined cycle plants operate at a very high efficiency, increasing the demand for gas. At the same time, countries may continue to look for alternate fuels such as coal and liquid fuels, including crude and residual oil, to increase energy stability and security. In over the past few decades, the technology for refining crude oil has gone through a significant transformation. With the advanced refining process, there are additional lighter distillates produced from crude that could significantly change the quality of residual oil used for producing heavy fuel. Using poor quality residual fuel in a gas turbine to generate power could have many challenges with regards to availability and efficiency of a gas turbine. The fuel needs to be treated prior to combustion and needs a frequent turbine cleaning to recover the lost performance due to fouling. This paper will discuss GE’s recently developed gas turbine features, including automatic water wash, smart cooldown and model based control (MBC) firing temperature control. These features could significantly increase availability and improve the average performance of heavy fuel oil (HFO). The duration of the gas turbine offline water wash sequence and the rate of output degradation due to fouling can be considerably reduced.


Author(s):  
Jeffrey Goldmeer ◽  
Paul Glaser ◽  
Bassam Mohammad

Abstract The Kingdom of Saudi Arabia has seen significant transformation in power generation in the past 10 years. There has been an increase in the number of F-class combined cycle power plants being developed and brought into commercial operation. There has also been a shift to the use of natural gas as primary fuel. At the same time, there has been an interest in switching the back-up fuel for new power plants from refined distillates to domestic crude oils. Both Arabian Super Light (ASL) and Arabian Extra Light (AXL) have been proposed for use in new F-class gas turbine combined cycle power plants. This paper provides details on the combustion evaluations of ASL and AXL, as well as the first field usage of ASL in a gas turbine.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Shi Liu ◽  
Hong Yin ◽  
Yan Xiong ◽  
Xiaoqing Xiao

Heavy duty gas turbines are the core components in the integrated gasification combined cycle (IGCC) system. Different from the conventional fuel for gas turbine such as natural gas and light diesel, the combustible component acquired from the IGCC system is hydrogen-rich syngas fuel. It is important to modify the original gas turbine combustor or redesign a new combustor for syngas application since the fuel properties are featured with the wide range hydrogen and carbon monoxide mixture. First, one heavy duty gas turbine combustor which adopts natural gas and light diesel was selected as the original type. The redesign work mainly focused on the combustor head and nozzle arrangements. This paper investigated two feasible combustor arrangements for the syngas utilization including single nozzle and multiple nozzles. Numerical simulations are conducted to compare the flow field, temperature field, composition distributions, and overall performance of the two schemes. The obtained results show that the flow structure of the multiple nozzles scheme is better and the temperature distribution inside the combustor is more uniform, and the total pressure recovery is higher than the single nozzle scheme. Through the full scale test rig verification, the combustor redesign with multiple nozzles scheme is acceptable under middle and high pressure combustion test conditions. Besides, the numerical computations generally match with the experimental results.


Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and the same technology as defined by reliability, availability, and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more base-loaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


Author(s):  
P. R. Mulik ◽  
P. P. Singh ◽  
A. Cohn

A total of five combustion tests utilizing water injection for control of NO, emissions have been conducted on three types of coal-derived liquid (CDL) fuels from the H-Coal and SRC II processes along with a shale-derived liquid (SDL) fuel supplied by the Radian Corporation. Actual testing was performed in a 0.14 m diameter gas-turbine-type combustor. For comparative purposes, each run with a synthetic liquid fuel was preceded by a baseline run utilizing No. 2 distillate oil. The effectiveness of water injection was found to decrease as the fuel-bound nitrogen (FBN) content of the synthetic liquids increased.


Sign in / Sign up

Export Citation Format

Share Document