Incorporating Solid Modeling Into Engineering Curriculum

Author(s):  
Y. C. Pao

Abstract Solid modeling is proposed as an integral part of freshman teaching on engineering drafting, computer programming, and computer-aided design. A low-cost, commercially available software, SilverScreen, is recommended for the students to experiment on wireframe and solid modelings. In addition to providing the basic drafting needs of dimensioning, labelling text of various size and orientation, chamfering, and filleting, other topics of solid modeling are proposed for the higher-level engineering courses. It enables the students to apply multiple-view, split-screen display (such as showing the top, front, right-side, auxiliary, and section views all on one screen), and Boolean manipulation of solids (union, subtraction, and others). Moreover, students can also use SilverScreen in conjunction with other programs written in BASIC and C languages.

Author(s):  
Antor Mahamudul Hashan ◽  
Abdullah Haidari ◽  
Srishti Saha ◽  
Titas Paul

Due to the rapid development of technology, the use of numerically controlled machines in the industry is increasing. The main idea behind this paper is computer-aided design (CAD) based low-cost computer numerical control 2D drawing robot that can accurately draw complex circuits, diagrams, logos, etc. The system is created using open-source hardware and software, which makes it available at a low cost. The open-source LibreCAD application has been used for computer-aided design. Geometric data of a CAD model is converted to coordinate points using the python-based F-Engrave application. This system uses the Arduino UNO board as a signal generator of the universal g-code sender without compromising the performance. The proposed drawing robot is designed as a low-cost robot for educational purposes and aims to increase the student's interest in robotics and computer-aided design (CAD) skills to the next level. The drawing robot structure has been developed, and it meets the requirements of low cost with satisfactory experimental results.


Author(s):  
Vassilios E. Theodoracatos ◽  
Xiaogang Guan

Abstract This paper presents a new Computer-Aided Design (CAD) synthesis model which uses Plex Grammar as structural relationship descriptors and NURBS surface representation for constructing standard and non-standard solid entities. Here, the designer uses a syntactic design methodology for early topological and geometrical definition of the structure of concept alternatives resulting from the design process. This syntactic scheme provides the capability of describing a large set of complex structures by using a small set of simple entities. The recursive nature of the grammar and the hierarchical representation of the structure makes the description of complex structures simple and under the direct control of the designer. An object structure constructive tree is generated and subsequently translated into Plex Grammar production rules in order to form an Interconnection Matrix (ICM) expressing. The resulting Plex structure defined in the ICM expresses the topological information among entities which form the specific types of objects. By modifying the Plex grammar rules, various objects with different geometry and topology can easily be reconstructed. Compared to conventional solid modeling techniques, this approach provides more systematic object generation, easy manipulation and modification, control over congruity and the ability to represent sculptured shapes. Several examples of syntactic solid modeling applied in design synthesis will be presented for further usage in downstream applications.


Author(s):  
Robert E. Wendrich

Current and ongoing research and experimentations in the creation, design and build of low-cost, high-value prototypes for novel and unconventional interaction devices (IxD) in combination with cyber-physical system (CPS) (i.e. hybrid design tools (HDT), blended spaces) tangible user interfaces (TUI) and use of sensor technology lead to a variety of novel interaction modalities, experiences and possibilities. In line with this research, we propose a first prototype Human Sensor Selection Tool (HSST) as a preliminary guide and guidelines for design and engineering domains. The HSST is based on and inspired by the ‘five human senses’ [1], a plethora in human body signals (e.g. proprioceptive, vestibular) and gestures (e.g. facial expression, (e-)motions) that could be integrated, translated, transformed, adapted or mimicked to enhance and enrich the interaction modalities with for example computer-aided design (CAD), computer-aided technologies (CAx), and effectively affective CPS.


Author(s):  
Duane Storti ◽  
Mark A. Ganter ◽  
William R. Ledoux ◽  
Randal P. Ching ◽  
Yangqiu Patrick Hu ◽  
...  

This paper describes a new formulation of solid modeling for treating parts derived from volumetric scans (computed tomography, magnetic resonance, etc.) along with parts from traditional computer-aided design operations. Recent advances in segmentation via level set methods produce voxel grids of signed distance values, and we interpolate the signed distance values using wavelets to produce an implicit or function-based representation called wavelet signed distance function representation that provides inherent support for data compression, multiscale modeling, and skeletal-based operations.


Author(s):  
Rogério Sales Gonçalves

One of the major educators’ challenges is to teach the theoretical lessons with practical examples that can be taught in the classroom or teaching laboratories. The application of these examples will face a major problem for students in engineering: the difficulty of understanding and seeing how a mechatronic device works in everyday life. This requires the use of tools that enable the construction of different low cost prototypes to assist in student learning. Another challenge to educators is the need to motivate students during the lessons and to present models that students can make and develop on their own. Within this context this paper presents a pedagogic proposition based on the use of LEGO Mindstorms kits to teach practical lab activities in a mechatronics engineering course. The objective is to develop teaching methodologies with the use of these LEGO kits in order to motivate the students and also to promote a higher interdisciplinarity, by proposing projects that unify different disciplines. Thus, the paper is divided into three parts according to the educational experiences implemented in the course of mechatronics engineering at the Federal University of Uberlândia, Brazil. The first part presents the use of the kits in robotics discipline. The second part presents the use of the virtual kits in the Computer Aided Design discipline with zero-cost. The third part presents a multi-disciplinary project EDROM in mechatronics using LEGO kits.


2020 ◽  
Author(s):  
Z. Erdos ◽  
P. Halswell ◽  
A. Matthews ◽  
B. Raymond

AbstractThe lack of commercially available low-cost laboratory spraying equipment for testing microbial control agents can hinder advancement in the field of biocontrol. This study presents an inexpensive, portable sprayer that is calibrated utilizing laboratory consumables. The computer aided design files are made available so that it is freely modifiable and can be used for machine routing or 3D printing. Bioassay data was obtained by spraying Myzus persicae with spores of entomopathogenic fungi. Observed variation in droplet deposition within tested pressure and volume settings, and spore deposition within sprayed concentrations were low. Bioassay results show reproducible mortality for the tested doses.


Sign in / Sign up

Export Citation Format

Share Document