Detection of Isomorphism Between Planar Kinematic Chains

Author(s):  
L. K. Patel ◽  
A. C. Rao

Abstract Structural analysis and synthesis of linkages is a very important aspect. Detection of isomorphism (equivalent structural topology) is essential to determine structurally distinct chains. Some methods to detect distinct chains and mechanisms have already been developed. These methods besides being falliable, require enormous computational effort and as such necessitate development of an easy and efficient method. This paper presents a new method based on graph theory, for detection of isomorphism among kinematic chains. A probability scheme is attached with the chains and relative loop positions are determined for the chains having identical probability schemes. Isomorphism is detected between planar kinematic chains having single degree of freedom.

1973 ◽  
Vol 95 (2) ◽  
pp. 525-532 ◽  
Author(s):  
M. Huang ◽  
A. H. Soni

Using graph theory and Polya’s theory of counting, the present paper performs structural synthesis and analysis of planar and three-dimensional kinematic chains. The Section 2 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of planar kinematic chains with kinematic elements such as revolute pairs, cam pairs, springs, belt-pulley, piston-cylinder, and gears. The theory developed is applied to enumerate eight-link kinematic chains with these kinematic elements. The Section 3 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of multi-loop spatial kinematic chains with higher and lower kinematic pairs. The theory developed is applied to enumerate all possible two-loop kinematic chains with or without general constraints.


1986 ◽  
Vol 10 (4) ◽  
pp. 213-218
Author(s):  
A.C. Rao

A number of distinct or non-isomorphic kinematic chains exist for a specified number of links and joints. For example, sixteen distinct chains can be obtained with eight links and two hundred and thirty chains with ten links having a single degree of freedom. Similarly, many space mechanisms can be formed with four links and joints having different degrees of freedom. So far no measure is available to know which of these possesses greater mobility or flexibility. Flexibility is not to be confused with the degree of freedom. Intuitively one feels that a six-link chain has greater flexibility than a four-bar chain both having the same degrees of freedom. Though the mobility of a chain increases with the number of links one is not sure how the structural arrangement, type of links and joints, their numbers and sequence etc. influence the same. Combining graph theory with the concepts of probability, simple formulae are developed to investigate the relative merits of spatial and planar kinematic chains. The greater the flexibility or mobility of the chain, the higher is the ability to meet the motion requirements, i.e., a chain having greater entropy can be expected, say, to reproduce a given function more accurately.


2014 ◽  
Vol 567 ◽  
pp. 499-504 ◽  
Author(s):  
Zubair Imam Syed ◽  
Mohd Shahir Liew ◽  
Muhammad Hasibul Hasan ◽  
Srikanth Venkatesan

Pressure-impulse (P-I) diagrams, which relates damage with both impulse and pressure, are widely used in the design and damage assessment of structural elements under blast loading. Among many methods of deriving P-I diagrams, single degree of freedom (SDOF) models are widely used to develop P-I diagrams for damage assessment of structural members exposed to blast loading. The popularity of the SDOF method in structural response calculation in its simplicity and cost-effective approach that requires limited input data and less computational effort. The SDOF model gives reasonably good results if the response mode shape is representative of the real behaviour. Pressure-impulse diagrams based on SDOF models are derived based on idealised structural resistance functions and the effect of few of the parameters related to structural response and blast loading are ignored. Effects of idealisation of resistance function, inclusion of damping and load rise time on P-I diagrams constructed from SDOF models have been investigated in this study. In idealisation of load, the negative phase of the blast pressure pulse is ignored in SDOF analysis. The effect of this simplification has also been explored. Matrix Laboratory (MATLAB) codes were developed for response calculation of the SDOF system and for repeated analyses of the SDOF models to construct the P-I diagrams. Resistance functions were found to have significant effect on the P-I diagrams were observed. Inclusion of negative phase was found to have notable impact of the shape of P-I diagrams in the dynamic zone.


Author(s):  
L.K. Patel ◽  
A.C. Rao

This paper presents a computationally simple and efficient method for identification of distinct mechanisms of a planar kinematic chain having a single degree of freedom. It is proposed that velocity diagrams for all the inversions of a chain be drawn and the possible isomorphism among these velocity diagrams be detected. From the velocity diagram, a motion transfer point matrix can be prepared resulting in the development of a numerical scheme to be associated with a mechanism. Identical schemes lead to detection of isomorphism between mechanisms. The main advantage of this method is that, apart form detecteing isomorphism, it indicates which of the inversions is better kinematically e.g. higher the total number of vectors, better is the mechanism.


Author(s):  
S. Shubhashis ◽  
M. Choubey ◽  
A.C. Rao

There is no dearth of methods to test isomorphism amongst kinematic chains. Search for a computationally easier, logically simple and unique method is still on. Present work is in quest of a reliable test to detect isomorphism among kinematic chains. Work presented here is more versatile as it incorporates more features of the kinematic chain which were not included earlier such as number and type of links, their relative dispositions in the kinematic chain, nature of adjacent links etc. The method proposed is based on the concept of pseudo-probability (pseudo means it appears to be, but not exactly. The approach does not follow in-toto the principles of probability and considerable liberty has been taken in interpreting the word probability hence the word pseudo is used along with the probability schemes). Using the resemblance of different coloured balls in an urn for the number and type of links in a kinematic chain, a matrix (named P-Matrix) representing the kinematic chain in totality is generated. For the sake of comparison a numerical scheme named, pseudo probability scheme, P-Scheme, is developed from the above P-Matrix and is used for testing isomorphism. In fact the method is more powerful in the sense that each row of the proposed P-Matrix is capable of representing the respective kinematic chain distinctly and can be used to compare the kinematic chains with same link assortments, uniquely. The proposed method, besides possessing the potential of testing the isomorphism among simple-joint, single degree of freedom kinematic chains is also capable of multi degrees of freedom and multiple-joint kinematic chains.


Author(s):  
K R Chung ◽  
C W Lee

An efficient method for compensating the effects of the truncated higher modes in structural dynamics modification (SDM) is developed to predict the accurate modal parameters of locally modified structures. The effects of the truncated higher modes are represented by a fictitious, effective mode residing beyond the frequency range of interest. The modal parameters are then easily obtained by the iterative single degree-of-freedom curve-fitting technique developed for lightly damped systems. A numerical example demonstrates the effectiveness of the improved SDM technique.


Author(s):  
Peiren He ◽  
Wenjun Zhang ◽  
Qing Li

Abstract Identification of kinematic chains is needed when studying in structural analysis and synthesis of mechanisms. Research on detection of isomorphism in graphs/kinematic chains has a long history. Many algorithms or methods have been proposed. However, these methods have only achieved success in restricted conditions. This paper proposes a new approach using the concept of quadratic form. Graphs/kinematic chains are first represented by their adjacency matrices, the eigenvalues and their eigenvectors corresponding to these adjacency matrices are then calculated. Two graphs are represented by two quadratic expressions. The comparison of two graphs reduces to the comparison of two quadratic expressions. Quadratic expressions are characterized by the eigenvalues and eigenvectors. An algorithm is developed to compare, correspondingly, eigenvalues and eigenvectors of two graphs, known test cases are used to verify the effectiveness of the approach.


Author(s):  
Abdulaziz N. Almadi ◽  
Anoop K. Dhingra ◽  
Dilip Kohli

Abstract This paper presents closed-form solutions to the displacement analysis problem of planar 8-link mechanisms with a single degree of freedom (SDOF). The degrees of I/O polynomials as well as the number of possible assembly configurations for all 71 8-link mechanisms resulting from 16 8-link kinematic chains are presented. Three numerical examples illustrating the applicability of the successive elimination procedure to the displacement analysis of 8-link mechanisms are presented. The first example deals with the determination of I/O polynomial for an 8-link mechanism containing no four-bar loops. The second and third examples, address in detail, some of the problems associated with the conversion of transcendental loop-closure equations into an algebraic form using tangent half-angle substitutions. These examples illustrate how extraneous roots can get introduced during the displacement analysis of mechanisms, and how one can derive an I/O polynomial devoid of the extraneous roots. Extensions of the proposed approach to the displacement analysis of SDOF spherical 8-link mechanisms is also presented.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao ◽  
Ming Zhang

Abstract This paper presents a systematical comparative study of various modular methods based on the different module types: basic kinematic chains (BKCs), single opened chains (SOCs), loops (or a tree and co-tree), links-joints, etc. for analysis and synthesis of structure, kinematics and dynamics of planar linkages. The basic idea is that any linkage can be divided into (or built up by) some modular components in sequence, and based on the component constraints and network entirty constraints of the linkage, the unified modular approaches have been used for analysis and synthesis. In systematical comparative study, the main issues of a modular method have been discussed, such as: the topological characteristics revealed via different module types; the dimension of a set of kinematic equations; the automated generation and solution of kinematic equations; the dimension and automated generation of dynamical equations, and computation complexity for generating and solving dynamical equation; the automated generation of structural analysis and type synthesis; the generation of kinematic synthesis equations etc.. This paper gives a summary of the use of modular techniques for analyzing and synthesizing planar linkages in the recently thirty years. This comparative study includes two parts: Part I-modular structural analysis and modular kinematic analysis; Part II-modular dynamic analysis, modular structural synthesis and modular kinematic synthesis. This paper is the second part.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao ◽  
Ming Zhang

Abstract This paper presents a systematical comparative study of various modular methods based on the different module types: basic kinematic chains (BKCs), single opened chains (SOCs), loops (or a tree and co-tree), links-joints, etc. for analysis and synthesis of structure, kinematics and dynamics of planar linkages. The basic idea is that any linkage can be divided into (or built up by) some modular components in sequence, and based on the component constraints and network entirty constraints of the linkage, the unified modular approaches have been used for analysis and synthesis. In the systematical comparative study, the main issues of a modular method have been discussed, such as: the topological characteristics revealed via different module types; the dimension of a set of kinematic equations; the automated generation and solution of kinematic equations; the dimension and automated generation of dynamical equations, and computation complexity for generating and solving dynamical equation; the automated generation of structural analysis and type synthesis; the generation of kinematic synthesis equations etc.. This paper gives a summary of the use of modular techniques for analyzing and synthesizing planar linkages in the recently thirty years. This comparative study includes two parts: part I — modular structural analysis and modular kinematic analysis; part II — modular dynamics analysis, modular structural synthesis and modular kinematic synthesis. This paper is the first part.


Sign in / Sign up

Export Citation Format

Share Document