Experimental Validation of a Dynamic Simulation

Author(s):  
K. Harold Yae ◽  
Su-Tai Chern ◽  
Howyoung Hwang

Abstract Using forward and inverse dynamic analysis, the dynamic simulation of a backhoe has been compared with experiments. In the experiment, recorded were the configuration and force histories; that is, velocity and position, and force output from the hydraulic cylinder-all were measured in the time domain. When the experimental force history is used as driving force in the simulation, forward dynamic analysis produces a corresponding motion history. And when the experimental motion history is used as if a prescribed trajectory, inverse dynamic analysis generates a corresponding force history. Therefore, these two sets of motion and force histories — one set from experiment, and the other from the simulation that is driven forward and backward with the experimental data — are compared in the time domain. The comparisons are discussed in regard to the effects of variations in initial conditions, friction, and viscous damping.

2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.


2014 ◽  
Vol 568-570 ◽  
pp. 1020-1025
Author(s):  
Zhuo Wei Jiang ◽  
Chun Ming Gao

In view of badly transplanting of analog filter and low cost performance of digital filter for the washing out signal methods used by dynamic simulator, this paper proposed a computer intelligent time domain method. We decompose signal with the computer intelligence in the time domain, and convert the signal into the corresponding movement form respectively, then get the final result by overlaying them. The experimental results show that this method not only can achieve the effect of the traditional methods, better portability and faster computation speed, but also can be achieved directly on general computers.


Robotica ◽  
2019 ◽  
Vol 37 (11) ◽  
pp. 1971-1986
Author(s):  
Ruoyu Feng ◽  
Peng Zhang ◽  
Junfeng Li ◽  
Hexi Baoyin

SummaryIn this study, the kinematics and dynamics of a single actuator wave (SAW)-like robot are explored. Comprising a helical spine and links, SAW has the potential for miniaturization. A kinematic model for SAW is firstly established, and the dynamic equation of motion is derived based on Kane’s method. For validation, the motion of SAW is simulated using both MATLAB and ADAMS, and the comparison of results demonstrates the effectiveness of the theoretical models. Then the inverse dynamic analysis is performed to reveal the power consumption. Finally, robot prototypes are developed and tested to confirm the robot velocity predicted by simulations.


Author(s):  
M. Necip Sahinkaya ◽  
Yanzhi Li

Inverse dynamic analysis of a three degree of freedom parallel mechanism driven by three electrical motors is carried out to study the effect of motion speed on the system dynamics and control input requirements. Availability of inverse dynamics models offer many advantages, but controllers based on real-time inverse dynamic simulations are not practical for many applications due to computational limitations. An off-line linearisation of system and error dynamics based on the inverse dynamic analysis is developed. It is shown that accurate linear models can be obtained even at high motion speeds eliminating the need to use computationally intensive inverse dynamics models. A point-to-point motion path for the mechanism platform is formulated by using a third order exponential function. It is shown that the linearised model parameters vary significantly at high motion speeds, hence it is necessary to use adaptive controllers for high performance.


2021 ◽  
Vol 16 (91) ◽  
pp. 125-143
Author(s):  
Aleksei A. Gavrishev ◽  

In this article, based on the mathematical, numerical and computer modeling carried out by the combined application of E&F Chaos, Past, Fractan, Visual Recurrence Analysis, Eviews Student Version Lite programs, some of the well-known 2D models of S-chaos are modeled, the data obtained are studied using nonlinear dynamics methods and the fact of their relation or non-relation to chaotic (quasi-chaotic) processes is established. As a result, it was found that the time diagrams obtained for the studied 2D models of S-chaos have a complex noise-like appearance and are continuous in the time domain. The resulting spectral diagrams have both a complex noise-like and regular appearance and are continuous in the spectral regions. The obtained values of BDS-statistics show that some of the time implementations can be attributed to chaotic (quasi-chaotic) processes. Also, the obtained values of BDS-statistics show that the studied 2D models of S-chaos have a property characteristic of classical chaotic (quasi-chaotic) processes: the slightest change in the initial conditions leads to the generation of a new set of signals. The obtained values of the lower bound of the KS-entropy show that the studied models also have the properties of chaotic (quasi-chaotic). Taking into account the conducted research and data from known works [1–5], it is possible to conclude that 2D models of S-chaos can relate to chaotic (quasi-chaotic) processes.


2015 ◽  
Vol 6 (2) ◽  
pp. 7 ◽  
Author(s):  
Jan Tiré ◽  
Jan Victor ◽  
Patrick De Baets ◽  
Matthias Verstraete

At Ghent University a dynamic knee simulator to analyse the kinematics of a human knee has been developed. The rig is designed to perform tests on a mechanical hinge or on a human knee (with or without a prosthesis). The rig has one degree of freedom in a hip joint and four degrees of freedom in an ankle joint. There is currently one actuator that simulates the quadriceps forces. Two additional actuators are proposed in this paper to simulate the hamstrings forces. The magnitude and phase of the forces varies significantly during the movement (e.g. cycling or squatting). Literature indicates that the maximum muscle forces do not exceed 2000 N. An inverse dynamic analysis, using the musculoskeletal software AnyBody, is proposed to determine the evolution of these forces during the studied movements.


Author(s):  
Nicholas M. Veikos ◽  
Ferdinand Freudenstein

Abstract Part I of this paper (5) summarized the previous work and has described the theoretical and computational aspects of a computer-aided procedure which has been developed by the authors for the dynamic analysis of roller chain drives. Lagrange’s equations of motion have been derived by assuming the roller chain to behave as a series of masses lumped at the roller centers and connected by bars of constant axial stiffness. The equations of motion are solved in the time domain until steady state conditions are achieved.


2016 ◽  
Vol 13 (5) ◽  
pp. 652-664 ◽  
Author(s):  
Jesús Fernández Ruiz ◽  
Pedro Alves Costa ◽  
Rui Calçada ◽  
Luis E. Medina Rodríguez ◽  
Aires Colaço

Sign in / Sign up

Export Citation Format

Share Document